#############################
### Extremal skew-t model ###
#############################
### Extremal coefficient
index.ExtDep(object="extremal", model="EST", par=c(0.5,1,-2,2))
### Pickands dependence function
w <- seq(0.00001, .99999, length=100)
pick <- vector(length=100)
for(i in 1:100){
pick[i] <- index.ExtDep(object="pickands", model="EST", par=c(0.5,1,-2,2),
x=c(w[i],1-w[i]))
}
plot(w, pick, type="l", ylim=c(0.5, 1), ylab="A(t)", xlab="t")
polygon(c(0, 0.5, 1), c(1, 0.5, 1), lwd=2, border = 'grey')
### Upper tail dependence coefficient
index.ExtDep(object="upper.tail", model="EST", par=c(0.5,1,-2,2))
### Lower tail dependence coefficient
index.ExtDep(object="lower.tail", model="EST", par=c(0.5,1,-2,2))
################################
### Skew-normal distribution ###
################################
### Lower tail dependence function
index.ExtDep(object="lower.tail", model="SN", par=c(0.5,1,-2), u=0.5)
Run the code above in your browser using DataLab