This function calculates the density of parametric multivariate extreme distributions and corresponding angular density, or the non-parametric angular density represented through Bernstein polynomials.
dExtDep(x, method="Parametric", model, par, angular=TRUE, log=FALSE,
c=NULL, vectorial=TRUE, mixture=FALSE)
If x
is a matrix and vectorial=TRUE
, a vector of length nrow(x)
, otherwise a scalar.
A vector or a matrix. The value at which the density is evaluated.
A character string taking value "Parametric"
or "NonParametric"
A string with the name of the model: "PB"
(Pairwise Beta), "HR"
(Husler-Reiss), "ET"
(Extremal-t), "EST"
(Extremal Skew-t), TD
(Tilted Dirichlet) or AL
(Asymmetric Logistic) when evaluating the angular density. Restricted to "HR"
, "ET"
and "EST"
for multivariate extreme value densities. Required when method="Parametric"
.
A vector representing the parameters of the (parametric or non-parametric) model.
A logical value specifying if the angular density is computed.
A logical value specifying if the log density is computed.
A real value in \([0,1]\), providing the decision rule to allocate a data point to a subset of the simplex. Only required for the parametric angular density of the Extremal-t, Extremal Skew-t and Asymmetric Logistic models.
A logical value; if TRUE
a vector of nrow(x)
densities is returned. If FALSE
the likelihood
function is returned (product of densities or sum if log=TRUE
. TRUE
is the default.
A logical value specifying if the Bernstein polynomial representation of distribution should be expressed as a mixture. If mixture=TRUE
the density integrates to 1. Required when method="NonParametric"
.
Simone Padoan, simone.padoan@unibocconi.it, https://faculty.unibocconi.it/simonepadoan/; Boris Beranger, borisberanger@gmail.com https://www.borisberanger.com;
Note that when method="Parametric"
and angular=FALSE
, the density is only available in 2 dimensions.
When method="Parametric"
and angular=TRUE
, the models "AL"
, "ET"
and "EST"
are limited to 3 dimensions. This is because of the existence of mass on the subspaces on the simplex (and therefore the need to specify c
).
For the parametric models, the appropriate length of the parameter vector can be obtained from the dim_ExtDep
function and are summarized as follows.
When model="HR"
, the parameter vector is of length choose(dim,2)
.
When model="PB"
or model="Extremalt"
, the parameter vector is of length choose(dim,2) + 1
.
When model="EST"
, the parameter vector is of length choose(dim,2) + dim + 1
.
When model="TD"
, the parameter vector is of length dim
.
When model="AL"
, the parameter vector is of length 2^(dim-1)*(dim+2) - (2*dim+1)
.
Beranger, B. and Padoan, S. A. (2015). Extreme dependence models, chapater of the book Extreme Value Modeling and Risk Analysis: Methods and Applications, Chapman Hall/CRC.
Beranger, B., Padoan, S. A. and Sisson, S. A. (2017). Models for extremal dependence derived from skew-symmetric families. Scandinavian Journal of Statistics, 44(1), 21-45.
Coles, S. G., and Tawn, J. A. (1991), Modelling Extreme Multivariate Events, Journal of the Royal Statistical Society, Series B (Methodological), 53, 377--392.
Cooley, D.,Davis, R. A., and Naveau, P. (2010). The pairwise beta distribution: a flexible parametric multivariate model for extremes. Journal of Multivariate Analysis, 101, 2103--2117.
Engelke, S., Malinowski, A., Kabluchko, Z., and Schlather, M. (2015), Estimation of Husler-Reiss distributions and Brown-Resnick processes, Journal of the Royal Statistical Society, Series B (Methodological), 77, 239--265.
Husler, J. and Reiss, R.-D. (1989), Maxima of normal random vectors: between independence and complete dependence, Statistics and Probability Letters, 7, 283--286.
Marcon, G., Padoan, S.A., Naveau, P., Muliere, P. and Segers, J. (2017) Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. Journal of Statistical Planning and Inference, 183, 1-17.
Nikoloulopoulos, A. K., Joe, H., and Li, H. (2009) Extreme value properties of t copulas. Extremes, 12, 129--148.
Opitz, T. (2013) Extremal t processes: Elliptical domain of attraction and a spectral representation. Jounal of Multivariate Analysis, 122, 409--413.
Tawn, J. A. (1990), Modelling Multivariate Extreme Value Distributions, Biometrika, 77, 245--253.
pExtDep
, rExtDep
, fExtDep
, fExtDep.np
# Example of PB on the 4-dimensional simplex
dExtDep(x=rbind(c(0.1,0.3,0.3,0.3),c(0.1,0.2,0.3,0.4)), method="Parametric",
model="PB", par=c(2,2,2,1,0.5,3,4), log=FALSE)
# Example of EST in 2 dimensions
dExtDep(x=c(1.2,2.3), method="Parametric", model="EST", par=c(0.6,1,2,3), angular=FALSE, log=TRUE)
# Example of non-parametric angular density
beta <- c(1.0000000, 0.8714286, 0.7671560, 0.7569398,
0.7771908, 0.8031573, 0.8857143, 1.0000000)
dExtDep(x=rbind(c(0.1,0.9),c(0.2,0.8)), method="NonParametric", par=beta)
Run the code above in your browser using DataLab