##################################################
### Example - Pollution levels in Milan, Italy ###
##################################################
if (FALSE) {
### Here we will only model the dependence structure
data(MilanPollution)
data <- Milan.winter[,c("NO2","SO2")]
data <- as.matrix(data[complete.cases(data),])
# Thereshold
u <- apply(data, 2, function(x) quantile(x, prob=0.9, type=3))
# Hyperparameters
hyperparam <- list(mu.nbinom = 6, var.nbinom = 8, a.unif=0, b.unif=0.2)
### Standardise data to univariate Frechet margins
f1 <- fGEV(data=data[,1], method="Bayesian", sig0 = 0.1, nsim = 5e+4)
diagnostics(f1)
burn1 <- 1:30000
gev.pars1 <- apply(f1$param_post[-burn1,],2,mean)
sdata1 <- trans2UFrechet(data=data[,1], pars=gev.pars1, type="GEV")
f2 <- fGEV(data=data[,2], method="Bayesian", sig0 = 0.1, nsim = 5e+4)
diagnostics(f2)
burn2 <- 1:30000
gev.pars2 <- apply(f2$param_post[-burn2,],2,mean)
sdata2 <- trans2UFrechet(data=data[,2], pars=gev.pars2, type="GEV")
sdata <- cbind(sdata1,sdata2)
### Bayesian estimation using Bernstein polynomials
pollut1 <- fExtDep.np(method="Bayesian", data=sdata, u=TRUE,
mar.fit=FALSE, k0=5, hyperparam = hyperparam, nsim=5e+4)
diagnostics(pollut1)
}
Run the code above in your browser using DataLab