#############################
### Extremal skew-t model ###
#############################
## Extremal coefficient
index.ExtDep(object = "extremal", model = "EST", par = c(0.5, 1, -2, 2))
## Pickands dependence function
w <- seq(0.00001, 0.99999, length = 100)
pick <- numeric(100)
for (i in 1:100) {
pick[i] <- index.ExtDep(
object = "pickands", model = "EST", par = c(0.5, 1, -2, 2),
x = c(w[i], 1 - w[i])
)
}
plot(w, pick, type = "l", ylim = c(0.5, 1), ylab = "A(t)", xlab = "t")
polygon(c(0, 0.5, 1), c(1, 0.5, 1), lwd = 2, border = "grey")
## Upper tail dependence coefficient
index.ExtDep(object = "upper.tail", model = "EST", par = c(0.5, 1, -2, 2))
## Lower tail dependence coefficient
index.ExtDep(object = "lower.tail", model = "EST", par = c(0.5, 1, -2, 2))
################################
### Skew-normal distribution ###
################################
## Lower tail dependence function
index.ExtDep(object = "lower.tail", model = "SN", par = c(0.5, 1, -2), u = 0.5)
Run the code above in your browser using DataLab