# Extreme quantile estimation at the extreme level tau1 obtained with
# d-dimensional observations simulated from a joint distribution with
# a Gumbel copula and equal Frechet marginal distributions.
library(plot3D)
library(copula)
library(evd)
# distributional setting
copula <- "Gumbel"
dist <- "Frechet"
# parameter setting
dep <- 3
dim <- 3
scale <- rep(1, dim)
shape <- rep(3, dim)
par <- list(dep=dep, scale=scale, shape=shape, dim=dim)
# Intermediate level (or sample tail probability 1-tau)
tau <- 0.95
# Extreme level (or tail probability 1-tau1 of unobserved quantile)
tau1 <- 0.9995
# sample size
ndata <- 1000
# Simulates a sample from a multivariate distribution with equal Frechet
# marginals distributions and a Gumbel copula
data <- rmdata(ndata, dist, copula, par)
scatter3D(data[,1], data[,2], data[,3])
# High d-dimensional expectile (intermediate level) estimation
extQHat <- extMultiQuantile(data, tau, tau1, TRUE)
extQHat$ExtQHat
extQHat$VarCovExQHat
# run the following command to see the graphical representation
# \donttest{
extQHat <- extMultiQuantile(data, tau, tau1, TRUE, plot=TRUE)
# }
Run the code above in your browser using DataLab