Learn R Programming

ExtremeRisks (version 0.0.5)

fitdGPD: Maximum likelihood estimation of the parameters of the discrete generalized Pareto distribution

Description

Given a sample of exceedances, estimate the parameters via maximum likelihood along with \(1-\alpha\) level confidence intervals.

Usage

fitdGPD(excess, alpha = 0.05)

Value

a list with elements

  • mle vector of dimension 2 containing estimated scale and shape parameters

  • CI matrix of dimension 2 by 2 containing the \(1-\alpha\) level confidence intervals for scale and shape

Arguments

excess

vector of positive exceedances, i.e., \(Y - t \mid Y > t\), with \(t\) being the threshold

alpha

level for confidence interval of scale and shape parameters. Default: 0.05, giving 95% confidence intervals

References

Hitz, A.S., G. Samorodnistsky and R.A. Davis (2024). Discrete Extremes, Journal of Data Science, 22(4), pp. 524-536.

Examples

Run this code
fitdGPD(rpois(1000,2))

Run the code above in your browser using DataLab