Learn R Programming

EzGP (version 0.1.0)

Easy-to-Interpret Gaussian Process Models for Computer Experiments

Description

Fit model for datasets with easy-to-interpret Gaussian process modeling, predict responses for new inputs. The input variables of the datasets can be quantitative, qualitative/categorical or mixed. The output variable of the datasets is a scalar (quantitative). The optimization of the likelihood function can be chosen by the users (see the documentation of EzGP_fit()). The modeling method is published in "EzGP: Easy-to-Interpret Gaussian Process Models for Computer Experiments with Both Quantitative and Qualitative Factors" by Qian Xiao, Abhyuday Mandal, C. Devon Lin, and Xinwei Deng (2022) .

Copy Link

Version

Install

install.packages('EzGP')

Monthly Downloads

142

Version

0.1.0

License

GPL-2

Maintainer

Jiayi Li

Last Published

July 6th, 2023

Functions in EzGP (0.1.0)

LEzGP_data

Dataset for the example in function 'LEzGP_fit'
EzGP_predict

The Prediction Function of EzGP Model
cov_m

The Function for Constructing the Covariance Matrix in EzGP Package
EEzGP_fit

The Fitting Function of EEzGP Model
EEzGP_predict

The Prediction Function of EEzGP Model
LLF_gradients

The Log-likelihood Function and The Analytical Gradients in EzGP Package
LEzGP_fit

The Fitting Function of LEzGP Model
EzGP_fit

The Fitting Function of EzGP Model
EzGP_data

Dataset for the example in function 'EzGP_fit'