# NOT RUN {
# n observations, p FAB variables, q=2 control variables
n<-100 ; p<-25
# X is design matrix for params of interest
# beta is vector of true parameter values
# v a variable in the linking model - used to share info across betas
v<-rnorm(p) ; beta<-(2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8
# control coefficients and variables
alpha1<-.5 ; alpha2<- -.5
w1<-rnorm(n)/8
w2<-rnorm(n)/8
# simulate data
lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta
y<-rpois(n,exp(lp))
# fit model
fit<-glmFAB(y~w1+w2,X,~v,family=poisson)
fit$FABpv
fit$FABci
summary(fit) # look at p-value column
# }
Run the code above in your browser using DataLab