powered by
Marginal MLEs for the Fay-Herriot random effects model where the covariance matrix for the sampling model is known to scale.
mmleFH(y, X, V, ss0 = 0, df0 = 0)
direct data following normal model \(y\sim N(\theta,V\sigma^2)\)
linking model predictors \( \theta\sim N(X\beta,\tau^2 I)\)
covariance matrix to scale
prior sum of squares for estimate of \(\sigma^2\)
prior degrees of freedom for estimate of \(\sigma^2\)
a list of parameter estimates including
beta, the estimated regression coefficients
t2, the estimate of \(\tau^2\)
s2, the estimate of \(\sigma^2\)
# NOT RUN { n<-30 ; p<-3 X<-matrix(rnorm(n*p),n,p) beta<-rnorm(p) theta<-X%*%beta + rnorm(n) V<-diag(n) y<-theta+rnorm(n) mmleFH(y,X,V) # }
Run the code above in your browser using DataLab