scoreFACT_V(df, updateItems = FALSE, keepNvalid = FALSE)
TRUE
any original item that is
reverse coded for scoring will be replaced by its reverse coded version
in the returned data frame, and any values of 8 or 9 will be replaced
with NA. The default, FALSE
, returns the original items
unmodified.TRUE
the function
returns an additional variable for each of the returned scale scores
containing the number of valid, non-missing responses from each
respondent to the items on the given scale. If FALSE
(the
default), these variables are omitted from the returned data frame.updateItems = TRUE
) with new variables corresponding to
the scored scales. If keepNvalid = TRUE
, for each scored scale an
additional variable is returned that contains the number of valid
responses each respondent made to the items making up the given scale.
These optional variables have names of the format SCALENAME_N
.
The following scale scores are returned:scoreFACT_V
DOES NOT replace any of your
original item variables with the reverse coded versions. However, for
consistentcy with the behavior of the other versions on
http://www.facit.org, the updateItems
argument is
provided. If set to TRUE
, any item that is supposed to be
reverse coded will be replaced with its reversed version in the data
frame returned by scoreFACT_V
.## Setting up item names for fake data
G_names <- c(paste0('GP', 1:7),
paste0('GS', 1:7),
paste0('GE', 1:6),
paste0('GF', 1:7))
AC_names <- c('V1', 'V2', 'Cx3', 'V3', 'Cx4', 'V4', 'Cx5', 'BL4', 'C7', 'Cx6', 'C6', 'BL1',
'V5', 'Cx7', 'V6', 'V7', 'V8', 'V9', 'HN1')
itemNames <- c(G_names, AC_names)
## Generating random item responses for 8 fake respondents
set.seed(6375309)
exampleDat <- t(replicate(8, sample(0:4, size = length(itemNames), replace = TRUE)))
## Making half of respondents missing about 10% of items,
## half missing about 50%.
miss10 <- t(replicate(4, sample(c(0, 9), prob = c(0.9, 0.1),
size = length(itemNames), replace = TRUE)))
miss50 <- t(replicate(4, sample(c(0, 9), prob = c(0.5, 0.5),
size = length(itemNames), replace = TRUE)))
missMtx <- rbind(miss10, miss50)
## Using 9 as the code for missing responses
exampleDat[missMtx == 9] <- 9
exampleDat <- as.data.frame(cbind(ID = paste0('ID', 1:8),
as.data.frame(exampleDat)))
names(exampleDat) <- c('ID', itemNames)
## Returns data frame with scale scores and with original items untouched
scoredDat <- scoreFACT_V(exampleDat)
names(scoredDat)
scoredDat
## Returns data frame with scale scores, with the appropriate items
## reverse scored, and with item values of 8 and 9 replaced with NA.
## Also illustrates the effect of setting keepNvalid = TRUE.
scoredDat <- scoreFACT_V(exampleDat, updateItems = TRUE, keepNvalid = TRUE)
names(scoredDat)
## Descriptives of scored scales
summary(scoredDat[, c('PWB', 'SWB', 'EWB', 'FWB', 'FACTG',
'VCS', 'FACT_V_TOTAL', 'FACT_V_TOI')])
Run the code above in your browser using DataLab