Learn R Programming

FAdist (version 2.0)

GEV: Generalized Extreme Value Distribution (for maxima)

Description

Density, distribution function, quantile function and random generation for the generalized extreme value distribution (for maxima) with shape, scale, and location parameters equal to shape, scale, and location, respectively.

Usage

dgev(x,shape=1,scale=1,location=0,log=FALSE)
pgev(q,shape=1,scale=1,location=0,lower.tail=TRUE,log.p=FALSE)
qgev(p,shape=1,scale=1,location=0,lower.tail=TRUE,log.p=FALSE)
rgev(n,shape=1,scale=1,location=0)

Arguments

x,q
vector of quantiles.
p
vector of probabilities.
n
number of observations.
shape
shape parameter.
scale
scale parameter.
location
location parameter.
log,log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x]<="" em="">,otherwise, P[X > x].

Value

  • dgev gives the density, pgev gives the distribution function, qgev gives the quantile function, and rgev generates random deviates.

Details

If X is a random variable distributed according to a generalized extreme value distribution, it has density f(x) = 1/scale*(1+shape*((x-location)/scale))^(-1/shape-1)*exp(-(1+shape*((x-location)/scale))^(-1/shape))

References

Coles, S. (2001) An introduction to statistical modeling of extreme values. Springer

Examples

Run this code
x <- rgev(1000,-.1,3,100)
hist(x,freq=FALSE,col='gray',border='white')
curve(dgev(x,-.1,3,100),add=TRUE,col='red4',lwd=2)

Run the code above in your browser using DataLab