X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Construction of the p-values and their supports with Fisher's exact test
library(DiscreteTests) # for Fisher's exact test
test.results <- fisher_test_pv(df)
raw.pvalues <- test.results$get_pvalues()
pCDFlist <- test.results$get_pvalue_supports()
# DLR without critical values; using extracted p-values and supports
DLR <- DLR(raw.pvalues, pCDFlist)
# plot number of rejections dependent on the exceedance probability zeta
rejection.path(DLR, xlim = c(0, 1), ref.show = TRUE, ref.col = "green", ref.lty = 4)
# None-adaptive DLR without critical values; using test results object
NDLR <- NDLR(test.results)
# add plot for non-adaptive procedure (in red)
rejection.path(NDLR, col = "red", add = TRUE)
Run the code above in your browser using DataLab