The goal of FFTrees is to create and visualize fast-and-frugal decision trees (FFTs) from data with a binary outcome following the methods described in Phillips, Neth, Woike & Gaissmaier (2017).
You can install the released version of FFTrees from CRAN with:
install.packages("FFTrees")
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("ndphillips/FFTrees", build_vignettes = TRUE)
library(FFTrees)
#>
#> O
#> / \
#> F O
#> / \
#> F Trees 1.5.3
#>
#> Nathaniel.D.Phillips.is@gmail.com
#> FFTrees.guide() opens the guide.
Let’s create a fast-and-frugal tree predicting heart disease status
(“Healthy” vs. “Diseased”) based on a heart.train
dataset, and test
it on heart.test
a testing dataset.
Here are the first new rows and columns of heart.train
, our training
dataset. The key column is diagnosis
, a logical column (TRUE and
FALSE) which indicate, for each patient, whether or not they have heart
disease. The heart.test
dataset looks similar but with different cases
(i.e.; patients)
knitr::kable(heart.train[1:7, 1:10])
diagnosis | age | sex | cp | trestbps | chol | fbs | restecg | thalach | exang |
---|---|---|---|---|---|---|---|---|---|
FALSE | 44 | 0 | np | 108 | 141 | 0 | normal | 175 | 0 |
FALSE | 51 | 0 | np | 140 | 308 | 0 | hypertrophy | 142 | 0 |
FALSE | 52 | 1 | np | 138 | 223 | 0 | normal | 169 | 0 |
TRUE | 48 | 1 | aa | 110 | 229 | 0 | normal | 168 | 0 |
FALSE | 59 | 1 | aa | 140 | 221 | 0 | normal | 164 | 1 |
FALSE | 58 | 1 | np | 105 | 240 | 0 | hypertrophy | 154 | 1 |
FALSE | 41 | 0 | aa | 126 | 306 | 0 | normal | 163 | 0 |
Now let’s use FFTrees()
to create a fast and frugal tree from the
heart.train
data and test their performance on heart.test
# Load package
library(FFTrees)
# Create an FFTrees object from the heartdisease data
heart.fft <- FFTrees(formula = diagnosis ~.,
data = heart.train,
data.test = heart.test,
decision.labels = c("Healthy", "Disease"))
#> Setting goal = 'wacc'
#> Setting goal.chase = 'waccc'
#> Setting cost.outcomes = list(hi = 0, mi = 1, fa = 1, cr = 0)
#> Growing FFTs with ifan
#> Fitting other algorithms for comparison (disable with do.comp = FALSE) ...
# See the print method which shows aggregatge statistics
heart.fft
#> FFTrees
#> - Trees: 7 fast-and-frugal trees predicting diagnosis
#> - Outcome costs: [hi = 0, mi = 1, fa = 1, cr = 0]
#>
#> FFT #1: Definition
#> [1] If thal = {rd,fd}, decide Disease.
#> [2] If cp != {a}, decide Healthy.
#> [3] If ca <= 0, decide Healthy, otherwise, decide Disease.
#>
#> FFT #1: Prediction Accuracy
#> Prediction Data: N = 153, Pos (+) = 73 (48%)
#>
#> | | True + | True - |
#> |---------|--------|--------|
#> |Decide + | hi 64 | fa 19 | 83
#> |Decide - | mi 9 | cr 61 | 70
#> |---------|--------|--------|
#> 73 80 N = 153
#>
#> acc = 81.7% ppv = 77.1% npv = 87.1%
#> bacc = 82.0% sens = 87.7% spec = 76.2%
#> E(cost) = 0.183
#>
#> FFT #1: Prediction Speed and Frugality
#> mcu = 1.73, pci = 0.87
# Plot the best tree applied to the test data
plot(heart.fft,
data = "test",
main = "Heart Disease")
# Compare results across algorithms in test data
heart.fft$competition$test
#> algorithm n hi fa mi cr sens spec far ppv npv
#> 1 fftrees 153 64 19 9 61 0.8767123 0.7625 0.2375 0.7710843 0.8714286
#> 2 lr 153 55 13 18 67 0.7534247 0.8375 0.1625 0.8088235 0.7882353
#> 3 cart 153 50 19 23 61 0.6849315 0.7625 0.2375 0.7246377 0.7261905
#> 4 rf 153 58 6 15 74 0.7945205 0.9250 0.0750 0.9062500 0.8314607
#> 5 svm 153 55 7 18 73 0.7534247 0.9125 0.0875 0.8870968 0.8021978
#> acc bacc cost cost_decisions cost_cues
#> 1 0.8169935 0.8196062 0.1830065 0.1830065 0
#> 2 0.7973856 0.7954623 0.2026144 0.2026144 NA
#> 3 0.7254902 0.7237158 0.2745098 0.2745098 NA
#> 4 0.8627451 0.8597603 0.1372549 0.1372549 NA
#> 5 0.8366013 0.8329623 0.1633987 0.1633987 NA
Because fast-and-frugal trees are so simple, you can create one ‘from words’ and apply it to data!
# Create your own custom FFT 'in words' and apply it to data
# Create my own fft
my.fft <- FFTrees(formula = diagnosis ~.,
data = heart.train,
data.test = heart.test,
decision.labels = c("Healthy", "Disease"),
my.tree = "If sex = 1, predict Disease.
If age < 45, predict Healthy.
If thal = {fd, normal}, predict Disease.
Otherwise, predict Healthy")
#> Setting goal = 'wacc'
#> Setting goal.chase = 'waccc'
#> Setting cost.outcomes = list(hi = 0, mi = 1, fa = 1, cr = 0)
#> Fitting other algorithms for comparison (disable with do.comp = FALSE) ...
# Plot my custom fft and see how it did
plot(my.fft,
data = "test",
main = "Custom FFT")
APA Citation
Phillips, Nathaniel D., Neth, Hansjoerg, Woike, Jan K., & Gaissmaier, W. (2017). FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees. Judgment and Decision Making, 12(4), 344-368.
We had a lot of fun creating FFTrees and hope you like it too! We have
an article introducing the FFTrees
package in the journal Judgment and
Decision Making titled FFTrees: A toolbox to create, visualize,and
evaluate fast-and-frugal decision
trees. We encourage you
to read the article to learn more about the history of FFTs and how the
FFTrees package creates them.
If you use FFTrees in your work, please cite us and spread the word so we can continue developing the package
Here are some example publications that have used FFTrees:
install.packages('FFTrees')