These functions carry out direct, model-assisted, and small area estimation through three different modules: "Green Book", "Model-Assisted", and "Small Area".
GBest.pbar(
sumyn = "CONDPROP_ADJ",
ysum,
sumyd = NULL,
esttype = "AREA",
ratiotype = "PERACRE",
stratalut,
uniqueid,
unitvar,
strvar = NULL,
domain
)MAest.ht(y, N, FIA = TRUE, getweights = FALSE, var_method = "LinHTSRS")
MAest.ps(
y,
N,
x_sample,
x_pop,
FIA = TRUE,
save4testing = FALSE,
getweights = FALSE,
var_method = "SRSunconditional"
)
MAest.greg(
y,
N,
x_sample,
x_pop,
FIA = TRUE,
save4testing = TRUE,
modelselect = FALSE,
getweights = FALSE,
var_method = "LinHTSRS"
)
MAest.ratio(
y,
N,
x_sample,
x_pop,
FIA = TRUE,
save4testing = TRUE,
var_method = "LinHTSRS"
)
MAest.gregEN(
y,
N,
x_sample,
x_pop,
FIA = TRUE,
model = "linear",
save4testing = TRUE,
getweights = FALSE,
var_method = "LinHTSRS"
)
MAest.gregRatio(
yn,
yd,
N,
area,
x_sample,
x_pop,
FIA = TRUE,
save4testing = FALSE,
modelselect = FALSE,
getweights = FALSE,
var_method = "LinHTSRS"
)
MAest(
yn = "CONDPROP_ADJ",
dat.dom,
cuniqueid,
unitlut = NULL,
pltassgn,
esttype = "ACRES",
MAmethod,
strvar = NULL,
prednames = NULL,
yd = NULL,
ratiotype = "PERACRE",
N,
area,
FIA = TRUE,
modelselect = FALSE,
getweights = FALSE,
var_method = ifelse(MAmethod %in% c("PS"), "SRSunconditional", "LinHTSRS")
)
MAest.dom(
dom,
dat,
cuniqueid,
unitlut,
pltassgn,
esttype,
MAmethod,
strvar = NULL,
prednames = NULL,
domain,
N,
area = NULL,
response = NULL,
response_d = NULL,
FIA = TRUE,
modelselect = FALSE,
getweights = FALSE,
var_method = ifelse(MAmethod %in% c("PS"), "SRSunconditional", "LinHTSRS"),
quiet = FALSE
)
MAest.unit(
unit,
dat,
cuniqueid,
unitlut,
unitvar,
esttype,
MAmethod = "HT",
strvar = NULL,
prednames = NULL,
domain,
response,
response_d = NULL,
npixels,
unitarea = NULL,
FIA = TRUE,
modelselect = FALSE,
getweights = FALSE,
var_method = ifelse(MAmethod %in% c("PS"), "SRSunconditional", "LinHTSRS"),
quiet = FALSE
)
PBest.pbar(
dom.prop,
uniqueid,
domain,
strtype = "post",
stratalut,
strunitvars,
unitvars,
strvar
)
PBest.pbarRatio(
dom.prop.n,
dom.prop.d,
uniqueid,
domain,
attribute,
strtype = "post",
stratalut,
strunitvars,
unitvars,
strvar
)
SAest.unit(
fmla.dom.unit,
pltdat.dom,
dunitlut.dom,
yn,
SApackage,
dunitvar,
predselect.unit,
prior = NULL
)
SAest.area(
fmla.dom.area,
pltdat.area,
dunitlut.area,
cuniqueid,
dunitvar = "DOMAIN",
predselect.area,
yn,
SApackage,
prior = NULL
)
SAest(
yn = "CONDPROP_ADJ",
dat.dom,
cuniqueid,
pltassgn,
dunitlut,
prednames = NULL,
dunitvar = "DOMAIN",
SAmethod = "unit",
SApackage = "JoSAE",
yd = NULL,
ratiotype = "PERACRE",
largebnd.val = NULL,
showsteps = FALSE,
savesteps = FALSE,
stepfolder = NULL,
prior = NULL,
modelselect = TRUE,
multest = TRUE,
multest_estimators = NULL,
bayes = FALSE,
bayes_opts = NULL,
save4testing = FALSE
)
SAest.dom(
dom,
dat,
cuniqueid,
dunitlut,
pltassgn,
dunitvar = "DOMAIN",
SApackage,
SAmethod,
prednames = NULL,
domain,
response = NULL,
largebnd.val = NULL,
showsteps = FALSE,
savesteps = FALSE,
stepfolder = NULL,
prior = NULL,
modelselect = TRUE,
multest = TRUE,
multest_estimators = NULL,
bayes = FALSE,
bayes_opts = NULL,
save4testing = FALSE,
quiet = FALSE
)
SAest.large(
largebnd.val,
dat,
cuniqueid,
largebnd.unique,
dunitlut,
dunitvar = "DOMAIN",
SApackage = "JoSAE",
SAmethod = "unit",
domain,
response,
prednames = NULL,
showsteps = FALSE,
savesteps = FALSE,
stepfolder = NULL,
prior = NULL,
modelselect = TRUE,
multest = TRUE,
multest_estimators = "all",
bayes = FALSE,
bayes_opts = NULL,
vars2keep = NULL,
save4testing = FALSE,
quiet = FALSE
)
List object containing estimates produced. If GB or PB estimation, output is directly from FIESTAutils, while outputs for MA or SA will be list objects from packages such as `mase`, `sae`, `hbsae`, or `JoSAE`.
Tracey S. Frescino, Grayson W. White
These functions can carry out estimation with data from a variety of domains, but are designed for USFS FIA data.