File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-06-25', tz='GMT'))
Calibration.periods<-data.frame(
calibration.start=as.POSIXct(c(NA, "2014-05-05")),
calibration.stop=as.POSIXct(c("2013-08-20", NA)),
lon=5.43, lat=52.93)
#use c() also for the geographic coordinates, if you have more than one calibration location
# (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
distance.from.land.allowed.to.use=c(-Inf, Inf),
distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
Calibration=Calibration, threads=1)
# here we will run only 1e4 partilces for a very short track.
# One should use 1e6 particles for the full run
Result<-run.particle.filter(all.in, threads=1,
nParticles=1e3, known.last=TRUE,
precision.sd=25, check.outliers=FALSE)
plot_util_distr(Result, zoom=6, save=FALSE)
Run the code above in your browser using DataLab