Learn R Programming

FRB (version 2.0-1)

MMest_loccov: S- and MM-Estimates of multivariate location and covariance matrix

Description

Compute S- and MM-Estimates of multivariate location and covariance matrix

Usage

MMest_loccov(Y, control=MMcontrol(...), ...)
    Sest_loccov(Y, bdp=.5, control=Scontrol(...), ...)
    MMest_twosample(X, groups, control=MMcontrol(...), ...)
    Sest_twosample(X, groups, bdp=0.5, control=Scontrol(...), ...)

Value

Return lists with the following components:

Mu

location

Gamma

shape

scale

scale=det^(1/(2*m))

Sigma

covariance matrix

c1

tuning parameter of the loss function for MM-estimation

SMu

location of the initial S-estimate

SGamma

shape of the initial S-estimate

SSigma

covariance matrix of the initial S-estimate

b

tuning parameters used in Tukey biweight loss function for S-estimation, as determined by bdp

w

scaled weights

outflag

outlier flags

Arguments

Y

input matrix or data frame

X

input matrix or data frame

bdp

breakdown point, defaults to 0.5

groups

grouping variable

control

a list with control parameters for tuning the S- or MM-estimate and its computing algorithm, seeScontrol and MMcontrol.

...

further arguments to be passed to CovMMest()

Details

This functions are internal, wrappers around the functions Sest() CovMMest().

Examples

Run this code
# \donttest{
    Y <- matrix(rnorm(50*5), ncol=5)
    (MMests <- MMest_loccov(Y)) 

    (Sests <- Sest_loccov(Y, bdp = 0.25)) 

    Y1 <- matrix(rnorm(50*5), ncol=5)
    Y2 <- matrix(rnorm(50*5), ncol=5)
    Ybig <- rbind(Y1,Y2)
    grp <- c(rep(1,50),rep(2,50))
    (MMests <- MMest_twosample(Ybig, grp))
# }    

Run the code above in your browser using DataLab