## Not run:
# # Start the graphics device driver to save all plots in a pdf format
# pdf(file = "Example.pdf")
# # Get the stage C prostate cancer data from the rpart package
# library(rpart)
# data(stagec)
# # Split the stages into several columns
# dataCancer <- cbind(stagec[,c(1:3,5:6)],
# gleason4 = 1*(stagec[,7] == 4),
# gleason5 = 1*(stagec[,7] == 5),
# gleason6 = 1*(stagec[,7] == 6),
# gleason7 = 1*(stagec[,7] == 7),
# gleason8 = 1*(stagec[,7] == 8),
# gleason910 = 1*(stagec[,7] >= 9),
# eet = 1*(stagec[,4] == 2),
# diploid = 1*(stagec[,8] == "diploid"),
# tetraploid = 1*(stagec[,8] == "tetraploid"),
# notAneuploid = 1-1*(stagec[,8] == "aneuploid"))
# # Remove the incomplete cases
# dataCancer <- dataCancer[complete.cases(dataCancer),]
# # Load a pre-stablished data frame with the names and descriptions of all variables
# data(cancerVarNames)
# # Get a Cox proportional hazards model using:
# # - The default parameters
# md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
# data = dataCancer,
# var.description = cancerVarNames[,2])
# # Get a logistic regression model using
# # - The default parameters
# md <- FRESA.Model(formula = pgstat ~ 1,
# data = dataCancer,
# var.description = cancerVarNames[,2])
# # Get a logistic regression model using:
# # - redidual-based optimization
# md <- FRESA.Model(formula = pgstat ~ 1,
# data = dataCancer,
# OptType = "Residual",
# var.description = cancerVarNames[,2])
# # Get a Cox proportional hazards model using:
# # - 250 bootstrap loops
# md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
# data = dataCancer,
# loops = 250,
# var.description = cancerVarNames[,2])
# # Get a Cox proportional hazards model using:
# # - 250 bootstrap loops
# # - First order interactions in the update procedure
# md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
# data = dataCancer,
# loops = 250,
# interaction = c(1,2),
# var.description = cancerVarNames[,2])
# # Get a Cox proportional hazards model using:
# # - No bootstrapping
# # - No cross-validation
# md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
# data = dataCancer,
# CVfolds = 0,
# elimination.bootstrap.steps = 1,
# var.description = cancerVarNames[,2])
# # Get a Cox proportional hazards model using:
# # - NeRI-based optimization
# # - 250 bootstrap loops
# # - First order interactions in the update procedure
# md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,
# data = dataCancer,
# OptType = "Residual",
# loops = 250,
# interaction = c(1,2),
# var.description = cancerVarNames[,2])
# # Shut down the graphics device driver
# dev.off()## End(Not run)
Run the code above in your browser using DataLab