if (FALSE) {
  # load FRESA.CAD library
  #  library("FRESA.CAD")
  # iris data set
  data('iris')
  colors <- c("red","green","blue")
  names(colors) <- names(table(iris$Species))
  classcolor <- colors[iris$Species]
  #Decorrelating with usupervised basis and correlation goal set to 0.25
  system.time(irisDecor <- IDeA(iris,thr=0.25))
  
  ## The transformation matrix is stored at "UPLTM" attribute
  UPLTM <- attr(irisDecor,"UPLTM")
  print(UPLTM)
  #Decorrelating with supervised basis and correlation goal set to 0.25
  system.time(irisDecorOutcome <- IDeA(iris,Outcome="Species",thr=0.25))
  ## The transformation matrix is stored at "UPLTM" attribute
  UPLTM <- attr(irisDecorOutcome,"UPLTM")
  print(UPLTM)
  ## Compute PCA 
  features <- colnames(iris[,sapply(iris,is,"numeric")])
  irisPCA <- prcomp(iris[,features]);
  ## The PCA transformation
  print(irisPCA$rotation)
  ## Plot the transformed sets
  plot(iris[,features],col=classcolor,main="Raw IRIS")
  plot(as.data.frame(irisPCA$x),col=classcolor,main="PCA IRIS")
  featuresDecor <- colnames(irisDecor[,sapply(irisDecor,is,"numeric")])
  plot(irisDecor[,featuresDecor],col=classcolor,main="Outcome-Blind IDeA IRIS")
  featuresDecor <- colnames(irisDecorOutcome[,sapply(irisDecorOutcome,is,"numeric")])
  plot(irisDecorOutcome[,featuresDecor],col=classcolor,main="Outcome-Driven IDeA IRIS")
  }
Run the code above in your browser using DataLab