if (FALSE) {
        ### RR Plot Example ####
        # Start the graphics device driver to save all plots in a pdf format
        pdf(file = "RRPlot.pdf",width = 8, height = 6)
		library(survival)
		library(FRESA.CAD)
		op <- par(no.readonly = TRUE)
		### Libraries
		data(cancer, package="survival")
		lungD <- lung
		lungD$inst <- NULL
		lungD$status <- lungD$status - 1
		lungD <- lungD[complete.cases(lungD),]
		## Exploring Raw Features with RRPlot
		convar <- colnames(lungD)[lapply(apply(lungD,2,unique),length) > 10]
		convar <- convar[convar != "time"]
		topvar <- univariate_BinEnsemble(lungD[,c("status",convar)],"status")
		print(names(topvar))
		topv <- min(5,length(topvar))
		topFive <- names(topvar)[1:topv]
		RRanalysis <- list();
		idx <- 1
		for (topf in topFive)
		{
		  RRanalysis[[idx]] <- RRPlot(cbind(lungD$status,lungD[,topf]),
									  atRate=c(0.90),
									  timetoEvent=lungD$time,
									  title=topf,
									  # plotRR=FALSE
		  )
		  idx <- idx + 1
		}
		names(RRanalysis) <- topFive
		## Reporting the Metrics
		ROCAUC <- NULL
		CstatCI <- NULL
		LogRangp <- NULL
		Sensitivity <- NULL
		Specificity <- NULL
		for (topf in topFive)
		{
		  CstatCI <- rbind(CstatCI,RRanalysis[[topf]]$c.index$cstatCI)
		  LogRangp <- rbind(LogRangp,RRanalysis[[topf]]$surdif$pvalue)
		  Sensitivity <- rbind(Sensitivity,RRanalysis[[topf]]$ROCAnalysis$sensitivity)
		  Specificity <- rbind(Specificity,RRanalysis[[topf]]$ROCAnalysis$specificity)
		  ROCAUC <- rbind(ROCAUC,RRanalysis[[topf]]$ROCAnalysis$aucs)
		}
		rownames(CstatCI) <- topFive
		rownames(LogRangp) <- topFive
		rownames(Sensitivity) <- topFive
		rownames(Specificity) <- topFive
		rownames(ROCAUC) <- topFive
		print(ROCAUC)
		print(CstatCI)
		print(LogRangp)
		print(Sensitivity)
		print(Specificity)
		meanMatrix <- cbind(ROCAUC[,1],CstatCI[,1],Sensitivity[,1],Specificity[,1])
		colnames(meanMatrix) <- c("ROCAUC","C-Stat","Sen","Spe")
		print(meanMatrix)
		## COX Modeling
		ml <- BSWiMS.model(Surv(time,status)~1,data=lungD,NumberofRepeats = 10)
		sm <- summary(ml)
		print(sm$coefficients)
		### Cox Model Performance
		timeinterval <- 2*mean(subset(lungD,status==1)$time)
		h0 <- sum(lungD$status & lungD$time <= timeinterval)
		h0 <- h0/sum((lungD$time > timeinterval) | (lungD$status==1))
		print(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
		index <- predict(ml,lungD)
		rdata <- cbind(lungD$status,ppoisGzero(index,h0))
		rrAnalysisTrain <- RRPlot(rdata,atRate=c(0.90),
								  timetoEvent=lungD$time,
								  title="Raw Train: lung Cancer",
								  ysurvlim=c(0.00,1.0),
								  riskTimeInterval=timeinterval)
		### Reporting Performance 
		print(rrAnalysisTrain$keyPoints,caption="Key Values")
		print(rrAnalysisTrain$OERatio,caption="O/E Test")
		print(t(rrAnalysisTrain$OE95ci),caption="O/E Mean")
		print(rrAnalysisTrain$OARatio,caption="O/Acum Test")
		print(t(rrAnalysisTrain$OAcum95ci),caption="O/Acum Mean")
		print(rrAnalysisTrain$c.index$cstatCI,caption="C. Index")
		print(t(rrAnalysisTrain$ROCAnalysis$aucs),caption="ROC AUC")
		print((rrAnalysisTrain$ROCAnalysis$sensitivity),caption="Sensitivity")
		print((rrAnalysisTrain$ROCAnalysis$specificity),caption="Specificity")
		print(t(rrAnalysisTrain$thr_atP),caption="Probability Thresholds")
		print(rrAnalysisTrain$surdif,caption="Logrank test")
  
        dev.off()
	}
Run the code above in your browser using DataLab