if (FALSE) {
		### Binary Classification Example ####
		# Start the graphics device driver to save all plots in a pdf format
		pdf(file = "BinaryClassificationExample.pdf",width = 8, height = 6)
		# Get the stage C prostate cancer data from the rpart package
		data(stagec,package = "rpart")
		# Prepare the data. Create a model matrix without the event time
		stagec$pgtime <- NULL
		stagec$eet <- as.factor(stagec$eet)
		options(na.action = 'na.pass')
		stagec_mat <- cbind(pgstat = stagec$pgstat,
		as.data.frame(model.matrix(pgstat ~ .,stagec))[-1])
		# Impute the missing data
        dataCancerImputed <- nearestNeighborImpute(stagec_mat)
        dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)	
		# Cross validating a LDA classifier.
		# 80
		cv <- randomCV(dataCancerImputed,"pgstat",MASS::lda,trainFraction = 0.8, 
		repetitions = 10,featureSelectionFunction = univariate_tstudent,
		featureSelection.control = list(limit = 0.5,thr = 0.975));
		# Compare the LDA classifier with other methods
		cp <- BinaryBenchmark(referenceCV = cv,referenceName = "LDA",
		                      referenceFilterName="t.Student")
		pl <- plot(cp,prefix = "StageC: ")
		# Default Benchmark classifiers method (BSWiMS) and filter methods. 
		# 80
		cp <- BinaryBenchmark(theData = dataCancerImputed,
		theOutcome = "pgstat", reps = 10, fraction = 0.8)
		# plot the Cross Validation Metrics
		pl <- plot(cp,prefix = "Stagec:");
		# Shut down the graphics device driver
		dev.off()
		#### Regression Example ######
		# Start the graphics device driver to save all plots in a pdf format
		pdf(file = "RegressionExample.pdf",width=8, height=6)
		# Get the body fat data from the TH package
		data("bodyfat", package = "TH.data")
		# Benchmark regression methods and filter methods. 
		#80
		cp <- RegresionBenchmark(theData = bodyfat, 
		theOutcome = "DEXfat", reps = 10, fraction = 0.8)
		# plot the Cross Validation Metrics
		pl <- plot(cp,prefix = "Body Fat:");
		# Shut down the graphics device driver
		dev.off()
		#### Ordinal Regression Example #####
		# Start the graphics device driver to save all plots in a pdf format
		pdf(file = "OrdinalRegressionExample.pdf",width=8, height=6)
		# Get the GBSG2 data
		data("GBSG2", package = "TH.data")
		# Prepare the model frame for benchmarking
		GBSG2$time <- NULL;
		GBSG2$cens <- NULL;
		GBSG2_mat <- cbind(tgrade = as.numeric(GBSG2$tgrade),
		as.data.frame(model.matrix(tgrade~.,GBSG2))[-1])
		# Benchmark regression methods and filter methods. 
		#30
		cp <- OrdinalBenchmark(theData = GBSG2_mat, 
		theOutcome = "tgrade", reps = 10, fraction = 0.3)
		# plot the Cross Validation Metrics
		pl <- plot(cp,prefix = "GBSG:");
		# Shut down the graphics device driver
		dev.off()
	}
Run the code above in your browser using DataLab