Mmethods(what = c("all", "tmax", "K", "Hoenig", "Pauly"))
metaM(method = Mmethods(), justM = TRUE, tmax = NULL, K = NULL,
Linf = NULL, t0 = NULL, b = NULL, L = NULL, T = NULL, t50 = NULL,
Winf = NULL)
## S3 method for class 'metaM':
print(x, digits = 4, ...)TRUE; Default) or a more descriptive list should be returned.metaM object returned from metaM when justM=FALSE.Mmethods returns a charachter vector with a list of methods. If only one method is chosen then metaM returns a single numeric if justM=TRUE or, otherwise, a metaM object that is a list with the following items:
method: The name for the method within the function (as given inmethod).name: A more descriptive name for the method.givens: A vector of values required by the method to estimate M.M: The estimated natural mortality rate.methods are chosen then a data.frame is returned with the method name abbreviation in the method variable and the associated estimated M in the M variable.PaulyL, PaulyW, HoenigO for Hgroup="all" and Hgroup="fish", HoenigO2 for Hgroup="all" and Hgroup="fish", "JensenK1", "Gislason", "AlversonCarney", "Charnov", "ZhangMegrey", "RikhterEfanov1", and "RikhterEfanov2" methods for three stocks. All results perfectly matched Kenchington's results for Chesapeake Bay Anchovy and Rio Formosa Seahorse. For the Norwegian Fjord Lanternfish, all results perfectly matched Kenchington's results except for when Hgroup="fish" for both HoenigO and HoenigO2.
Results for the Rio Formosa Seahorse data were also tested against results from M.empirical from PaulyL, PaulyW, HoenigO for Hgroup="all" and Hgroup="fish", "Gislason", and "AlversonCarney" methods (the only methods in common between the two packages). All results matched perfectly.method. The available methods can be seen with Mmethods() and are listed below with a brief description of where the equation came from. The sources (listed below) should be consulted for more specific information.
method="HoenigNLS": Thetmax.method="PaulyLNoT": TheKandLinf.method="PaulyL": TheK,Linf, andT.method="PaulyW": TheK,Winf, andT.method="HoeingO",method="HoeingOF",method="HoeingOM",method="HoeingOC": The originaltmax.method="HoeingO2",method="HoeingO2F",method="HoeingO2M",method="HoeingO2C": The originaltmax.method="HoenigLM": Thetmax.method="HewittHoenig": Thetmax.method="tmax1": Thetmax.method="K1": TheK.method="K2": TheK.method="JensenK1": TheK.method="JensenK2": TheK.method="Gislason": TheK,Linf, andL.method="AlversonCarney": ThetmaxandK.method="Charnov": TheK,Linf, andL.method="ZhangMegreyD",method="ZhangMegreyP": Thegroup. Requirestmax,K,t0,t50, andb.method="RikhterEfanov1": Thet50.method="RikhterEfanov2": Thet50,K,t0, andb.M.empirical in ## List names for available methods
Mmethods()
Mmethods("tmax")
## Simple Examples
metaM("tmax",tmax=20)
metaM("tmax",tmax=20,justM=FALSE)
metaM("HoenigNLS",tmax=20)
metaM("HoenigNLS",tmax=20,justM=FALSE)
## Example Patagonian Sprat ... from Table 2 in Cerna et al. (2014)
## http://www.scielo.cl/pdf/lajar/v42n3/art15.pdf
T <- 11
Linf <- 17.71
K <- 0.78
t0 <- -0.46
tmax <- t0+3/K
t50 <- t0-(1/K)*log(1-13.5/Linf)
metaM("RikhterEfanov1",t50=t50)
metaM("PaulyL",K=K,Linf=Linf,T=T)
metaM("PaulyL",K=K,Linf=Linf,T=T,justM=FALSE)
metaM("HoenigNLS",tmax=tmax)
metaM("HoenigO",tmax=tmax)
metaM("HewittHoenig",tmax=tmax)
metaM("AlversonCarney",K=K,tmax=tmax)
## Example of multiple calculations
metaM(c("RikhterEfanov1","PaulyL","HoenigO","HewittHoenig","AlversonCarney"),
K=K,Linf=Linf,T=T,tmax=tmax,t50=t50)
## Example of multiple methods using Mmethods
# select some methods
metaM(Mmethods()[-c(15,20,22:24,26)],K=K,Linf=Linf,T=T,tmax=tmax,t50=t50)
# select just the Hoenig methods
metaM(Mmethods("Hoenig"),K=K,Linf=Linf,T=T,tmax=tmax,t50=t50)Run the code above in your browser using DataLab