Mmethods(what = c("all", "tmax", "K", "Hoenig", "Pauly"))
metaM(method = Mmethods(), justM = TRUE, tmax = NULL, K = NULL,
Linf = NULL, t0 = NULL, b = NULL, L = NULL, T = NULL, t50 = NULL,
Winf = NULL)
## S3 method for class 'metaM':
print(x, digits = 4, ...)
TRUE
; Default) or a more descriptive list should be returned.metaM
object returned from metaM
when justM=FALSE
.Mmethods
returns a charachter vector with a list of methods. If only one method
is chosen then metaM
returns a single numeric if justM=TRUE
or, otherwise, a metaM
object that is a list with the following items:
method
: The name for the method within the function (as given inmethod
).name
: A more descriptive name for the method.givens
: A vector of values required by the method to estimate M.M
: The estimated natural mortality rate.method
s are chosen then a data.frame is returned with the method name abbreviation in the method
variable and the associated estimated M in the M
variable.PaulyL
, PaulyW
, HoenigO
for Hgroup="all"
and Hgroup="fish"
, HoenigO2
for Hgroup="all"
and Hgroup="fish"
, "JensenK1"
, "Gislason"
, "AlversonCarney"
, "Charnov"
, "ZhangMegrey"
, "RikhterEfanov1"
, and "RikhterEfanov2"
methods for three stocks. All results perfectly matched Kenchington's results for Chesapeake Bay Anchovy and Rio Formosa Seahorse. For the Norwegian Fjord Lanternfish, all results perfectly matched Kenchington's results except for when Hgroup="fish"
for both HoenigO
and HoenigO2
.
Results for the Rio Formosa Seahorse data were also tested against results from M.empirical
from PaulyL
, PaulyW
, HoenigO
for Hgroup="all"
and Hgroup="fish"
, "Gislason"
, and "AlversonCarney"
methods (the only methods in common between the two packages). All results matched perfectly.method
. The available methods can be seen with Mmethods()
and are listed below with a brief description of where the equation came from. The sources (listed below) should be consulted for more specific information.
method="HoenigNLS"
: Thetmax
.method="PaulyLNoT"
: TheK
andLinf
.method="PaulyL"
: TheK
,Linf
, andT
.method="PaulyW"
: TheK
,Winf
, andT
.method="HoeingO"
,method="HoeingOF"
,method="HoeingOM"
,method="HoeingOC"
: The originaltmax
.method="HoeingO2"
,method="HoeingO2F"
,method="HoeingO2M"
,method="HoeingO2C"
: The originaltmax
.method="HoenigLM"
: Thetmax
.method="HewittHoenig"
: Thetmax
.method="tmax1"
: Thetmax
.method="K1"
: TheK
.method="K2"
: TheK
.method="JensenK1"
: TheK
.method="JensenK2"
: TheK
.method="Gislason"
: TheK
,Linf
, andL
.method="AlversonCarney"
: Thetmax
andK
.method="Charnov"
: TheK
,Linf
, andL
.method="ZhangMegreyD"
,method="ZhangMegreyP"
: Thegroup
. Requirestmax
,K
,t0
,t50
, andb
.method="RikhterEfanov1"
: Thet50
.method="RikhterEfanov2"
: Thet50
,K
,t0
, andb
.M.empirical
in ## List names for available methods
Mmethods()
Mmethods("tmax")
## Simple Examples
metaM("tmax",tmax=20)
metaM("tmax",tmax=20,justM=FALSE)
metaM("HoenigNLS",tmax=20)
metaM("HoenigNLS",tmax=20,justM=FALSE)
## Example Patagonian Sprat ... from Table 2 in Cerna et al. (2014)
## http://www.scielo.cl/pdf/lajar/v42n3/art15.pdf
T <- 11
Linf <- 17.71
K <- 0.78
t0 <- -0.46
tmax <- t0+3/K
t50 <- t0-(1/K)*log(1-13.5/Linf)
metaM("RikhterEfanov1",t50=t50)
metaM("PaulyL",K=K,Linf=Linf,T=T)
metaM("PaulyL",K=K,Linf=Linf,T=T,justM=FALSE)
metaM("HoenigNLS",tmax=tmax)
metaM("HoenigO",tmax=tmax)
metaM("HewittHoenig",tmax=tmax)
metaM("AlversonCarney",K=K,tmax=tmax)
## Example of multiple calculations
metaM(c("RikhterEfanov1","PaulyL","HoenigO","HewittHoenig","AlversonCarney"),
K=K,Linf=Linf,T=T,tmax=tmax,t50=t50)
## Example of multiple methods using Mmethods
# select some methods
metaM(Mmethods()[-c(15,20,22:24,26)],K=K,Linf=Linf,T=T,tmax=tmax,t50=t50)
# select just the Hoenig methods
metaM(Mmethods("Hoenig"),K=K,Linf=Linf,T=T,tmax=tmax,t50=t50)
Run the code above in your browser using DataLab