Learn R Programming

FTRLProximal (version 0.3.0)

ftrlprox.default: FTRL Proximal for matrix class

Description

Online elastic net regression using the FTRL Proximal algorithm for training.

Usage

"ftrlprox"(x, y, lambda, alpha, a, b = 1, num_epochs = 1, save_loss = F, ...)

Arguments

x
the model matrix containing features
y
the response variable
lambda
regularization term
alpha
mixing parameter, alpha=0 corresponds to L2 regularization and alpha=1 to L1.
a
learning rate parameter.
b
learning rate parameter controlling decay, defaults to 1.
num_epochs
number of times we should traverse over the traiing set, defaults to 1.
save_loss
is to save the loss function during training.
...
additional args

Value

ftrlprox model object

Details

This method is intended for matrix input.