Learn R Programming

FactoClass (version 0.7.7)

cluster.carac: Cluster Characterization by Variables.

Description

It makes the characterization of the classes or cluster considering the variables in tabla. These variables can be quantitative, qualitative or frequencies.

Usage

cluster.carac( tabla , clase , tipo.v="d" , v.lim = 2 )

Arguments

tabla
object data.frame with variables of characterization, the variables must be of a single type (quantitative, qualitative or frequencies)
clase
vector that determines the partition of the table
tipo.v
type of variables: quantitative("continuas"), qualitative ("nominales") or frequencies("frecuencia")
v.lim
test value to show the variable or category like characteristic.

Value

  • Object of class list. It has the characterization of each class or cluster.

Details

For nominal or frecuency variables it compares the percentage of the categories within each class with the global percentage. For continuous variables it compares the average within each class with the general average. Categories and variables are ordered within each class by the test values and it shows only those that pass the threshold v.lim.

References

Lebart, L. and Morineau, A. and Piron, M. (1995) Statisitique exploratoire multidimensionnelle, Paris.

Examples

Run this code
data(BreedsDogs)
BD.act <- BreedsDogs[-7]  # active variables
BD.function <- subset(BreedsDogs,select=7)   
cluster.carac(BD.act,BD.function,"ca",2.0)  #  nominal variables


data(iris)
iris.act <- Fac.Num(iris)$numeric
clase <- Fac.Num(iris)$factor
cluster.carac(iris.act,clase,"co",2.0)  #  continuous variables

# frequency variables
data(BreedsDogs)
attach(BreedsDogs)
weig<-table(FUNc,WEIG)
weig<-data.frame(weig[,1],weig[,2],weig[,3])
cluster.carac(weig,  row.names(weig), "fr", 2) # frequency variables
detach(BreedsDogs)

Run the code above in your browser using DataLab