Learn R Programming

FactoClass (version 0.7.7)

ward.cluster: Hierarchic Classification by Ward's Method

Description

Performs the classification by Ward's method from the matrix of Euclidean distances.

Usage

ward.cluster(dista, peso = NULL , plots = TRUE, h.clust = 2, n.indi = 25 )

Arguments

dista
matrix of Euclidean distances ( class(dista)=="dist" ).
peso
(Optional) weight of the individuals, by default equal weights
plots
it makes dendrogram and histogram of the Ward's method
h.clust
if it is '0' returns a object of class hclust and a table of level indices, if it is '1' returns a object of class hclust, if it is '2' returns a table of level indices.
n.indi
number of indices to draw in the histogram (default 25).

Value

  • It returns an object of class hclust and a table of level indices (depending of h.clust). If plots = TRUE it draws the indices of level and the dendrogram.

Details

It is an entrance to the function h.clus to obtain the results of the procedure presented in Lebart et al. (1995). Initially the matrix of distances of Ward of the elements to classify is calculated: The Ward's distance between two elements to classify $i$ and $l$ is given by: $$W(i,l) = (m_i * m_l)/(m_i + m_i) * dist(i,l)^2$$ where $m_i$ y $m_l$ are the weights and $dist(i,l)$ is the Euclidean distance between them.

References

Lebart, L. and Morineau, A. and Piron, M. (1995) Statisitique exploratoire multidimensionnelle, Paris.

Examples

Run this code
data(ardeche)
ca <- dudi.coa(ardeche$tab,scannf=FALSE,nf=4)

 ward.cluster( dista= dist(ca$li), peso=ca$lw )

 dev.new()
 HW <- ward.cluster( dista= dist(ca$li), peso=ca$lw ,h.clust = 1)
 plot(HW)
 rect.hclust(HW, k=4, border="red")

Run the code above in your browser using DataLab