Performs Stable Cluster Algorithm for cluster analysis, using factorial coordinates from a dudi
object
stableclus(dudi,part,k.clust,ff.clus=NULL,bplot=TRUE,kmns=FALSE)
object of class stableclus
with the following characteristics:
vector indicating the cluster of each element.
A dudi
object, result of a previous factorial analysis using ade4
or FactoClass
Number of partitions
Number of clusters in each partition
Number of clusters for the final output, if NULL it asks in the console (Default NULL)
if TRUE, prints frequencies barplot of each cluster in the product partition (Default TRUE)
if TRUE, the process of consolidating the classification is performed (Default FALSE)
Carlos Andres Arias caariasr@unal.edu.co, Campo Elias Pardo cepardot@unal.edu.co
Diday (1972) (cited by Lebart et al. (2006)) presented a method for cluster analysis in an attempt to solve one of the inconvinients with the kmeans
algorithm, which is convergence to local optims. Stable clusters are built by performing different partitions (using kmeansW
algorithmn), each one with different initial points. The groups are then formed by selecting the individuals belonging to the same cluster in every partion.
Arias, C. A.; Zarate, D.C. and Pardo C.E. (2009), 'Implementacion del metodo de grupos estables en el paquete FactoClass de R', in: XIX Simposio Colombiano de Estadistica. Estadisticas Oficiales Medellin Colombia, Julio 16 al 20 de 2009 Universidad Nacional de Colombia. Bogota.
Lebart, L. (2015), 'DtmVic: Data and Text Mining - Visualization, Inference, Classification. Exploratory statistical processing of complex data sets comprising both numerical and textual data.', Web. http://www.dtmvic.com/
Lebart, L., Morineau, A., Lambert, T. and Pleuvret, P. (1999), SPAD. Syst?me Pour L'Analyse des Don?es, Paris.
Lebart, L., Piron, M. and Morineau, A. (2006), Statisitique exploratoire multidimensionnelle. Visualisation et inference en fouilles de donnees, 4 edn, Dunod, Paris.
data(ColorAdjective)
FCcol <-FactoClass(ColorAdjective, dudi.coa,nf=6,nfcl=10,k.clust=7,scanFC = FALSE)
acs <- FCcol$dudi
# stableclus(acs,3,3,4,TRUE,TRUE)
Run the code above in your browser using DataLab