HCPC(res, nb.clust=0, consol=TRUE, iter.max=10, min=3, max=NULL, metric="euclidean", method="ward", order=TRUE, graph.scale="inertia", nb.par=5, graph=TRUE, proba=0.05, cluster.CA="rows",kk=Inf,...)agnes for details.agnes for details.catdes for details.catdes for details or descfreq if clustering
is performed on CA results.catdes for details.call$t gives the results for the hierarchical tree;
call$bw.before.consol and call$bw.after.consol give the between inertia before consolidation (i.e. for the clustering obtained
from the hierarchical tree) and after the consolidation with Kmeans.plot.HCPC, catdes,
Video showing how to perform clustering with FactoMineR## Not run:
# data(iris)
# # Principal Component Analysis:
# res.pca <- PCA(iris[,1:4], graph=FALSE)
# # Clustering, auto nb of clusters:
# hc <- HCPC(res.pca, nb.clust=-1)
#
# ### Construct a hierarchical tree from a partition (with 10 clusters)
# ### (useful when the number of individuals is very important)
# hc2 <- HCPC(iris[,1:4], kk=10, nb.clust=-1)
# ## End(Not run)
Run the code above in your browser using DataLab