Learn R Programming

⚠️There's a newer version (2.9) of this package.Take me there.

FactoMineR (version 1.41)

Multivariate Exploratory Data Analysis and Data Mining

Description

Exploratory data analysis methods to summarize, visualize and describe datasets. The main principal component methods are available, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, Multiple Factor Analysis when variables are structured in groups, etc. and hierarchical cluster analysis. F. Husson, S. Le and J. Pages (2017) .

Copy Link

Version

Install

install.packages('FactoMineR')

Monthly Downloads

86,201

Version

1.41

License

GPL (>= 2)

Maintainer

Francois Husson

Last Published

May 4th, 2018

Functions in FactoMineR (1.41)

autoLab

Function to better position the labels on the graphs
condes

Continuous variable description
GPA

Generalised Procrustes Analysis
graph.var

Make graph of variables
footsize

footsize
geomorphology

geomorphology(data)
plot.DMFA

Draw the Dual Multiple Factor Analysis (DMFA) graphs
poison.text

Poison
plot.FAMD

Draw the Multiple Factor Analysis for Mixt Data graphs
print.CA

Print the Correspondance Analysis (CA) results
plotMFApartial

Plot an interactive Multiple Factor Analysis (MFA) graph
decathlon

Performance in decathlon (data)
predict.FAMD

Predict projection for new rows with Factor Analysis of Mixed Data
poison

Poison
hobbies

hobbies (data)
plot.PCA

Draw the Principal Component Analysis (PCA) graphs
simule

Simulate by bootstrap
plot.HMFA

Draw the Hierarchical Multiple Factor Analysis (HMFA) graphs
plot.HCPC

Plots for Hierarchical Classification on Principle Components (HCPC) results
predict.MCA

Predict projection for new rows with Multiple Correspondence Analysis
descfreq

Description of frequencies
summary.CA

Printing summeries of ca objects
estim_ncp

Estimate the number of components in Principal Component Analysis
plot.GPA

Draw the General Procrustes Analysis (GPA) map
poulet

Genomic data for chicken
plotGPApartial

Draw an interactive General Procrustes Analysis (GPA) map
print.CaGalt

Print the Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt) results
predict.CA

Predict projection for new rows with Correspondence Analysis
dimdesc

Dimension description
mortality

The cause of mortality in France in 1979 and 2006
tab.disjonctif

Make a disjonctif table
milk

milk
print.MCA

Print the Multiple Correspondance Analysis (MCA) results
plot.MCA

Draw the Multiple Correspondence Analysis (MCA) graphs
print.MFA

Print the Multiple Factor Analysis results
plot.CA

Draw the Correspondence Analysis (CA) graphs
tab.disjonctif.prop

Make a disjunctive table when missing values are present
summary.MCA

Printing summeries of MCA objects
summary.MFA

Printing summaries of MFA objects
print.FAMD

Print the Multiple Factor Analysis of mixt Data (FAMD) results
print.GPA

Print the Generalized Procrustes Analysis (GPA) results
plot.MFA

Draw the Multiple Factor Analysis (MFA) graphs
wine

Wine
write.infile

Print in a file
prefpls

Scatter plot and additional variables with quality of representation contour lines
print.PCA

Print the Principal Component Analysis (PCA) results
plot.CaGalt

Draw the Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt) graphs
print.catdes

Print the catdes results
tea

tea (data)
textual

Text mining
plot.catdes

Plots for description of clusters (catdes)
plotellipses

Draw confidence ellipses around the categories
predict.MFA

Predict projection for new rows with Multiple Factor Analysis
print.AovSum

Print the AovSum results
reconst

Reconstruction of the data from the PCA, CA or MFA results
senso

senso
summary.FAMD

Printing summeries of FAMD objects
summary.CaGalt

Printing summaries of CaGalt objects
predict.PCA

Predict projection for new rows with Principal Component Analysis
summary.PCA

Printing summeries of PCA objects
print.HCPC

Print the Hierarchical Clustering on Principal Components (HCPC) results
print.HMFA

Print the Hierarchical Multiple Factor Analysis results
svd.triplet

Singular Value Decomposition of a Matrix
FAMD

Factor Analysis for Mixed Data
HMFA

Hierarchical Multiple Factor Analysis
FactoMineR-package

Multivariate Exploratory Data Analysis and Data Mining with R
JO

Number of medals in athletism during olympic games per country
MCA

Multiple Correspondence Analysis (MCA)
DMFA

Dual Multiple Factor Analysis (DMFA)
AovSum

Analysis of variance with the contrasts sum (the sum of the coefficients is 0)
CaGalt

Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt)
MFA

Multiple Factor Analysis (MFA)
children

Children (data)
coord.ellipse

Construct confidence ellipses
catdes

Categories description
coeffRV

Calculate the RV coefficient and test its significance
HCPC

Hierarchical Clustering on Principle Components (HCPC)
CA

Correspondence Analysis (CA)
PCA

Principal Component Analysis (PCA)
RegBest

Select variables in multiple linear regression
health

health (data)
ellipseCA

Draw confidence ellipses in CA