Learn R Programming

FactorCopulaModel (version 0.1.1)

Factor Copula Models

Description

Inference methods for factor copula models for continuous data in Krupskii and Joe (2013) , Krupskii and Joe (2015) , Fan and Joe (2024) , one factor truncated vine models in Joe (2018) , and Gaussian oblique factor models. Functions for computing tail-weighted dependence measures in Lee, Joe and Krupskii (2018) and estimating tail dependence parameter.

Copy Link

Version

Install

install.packages('FactorCopulaModel')

Monthly Downloads

147

Version

0.1.1

License

GPL-3

Maintainer

Pavel Krupskii

Last Published

November 6th, 2025

Functions in FactorCopulaModel (0.1.1)

bvn_cpar2tau

Kendall's tau for bivariate normal
nscore

Rank-based normal scores transform
gauss1f1t

Compute correlation matrix according to 1-factor + 1-truncated vine (residual dependence) model
gaussLegendre

R interface for Gauss-Legendre quadrature
nestfactorcop_nllk

negative log-likelihoods of nested factor structured factor copula and derivatives computed in f90 for input to posDefHessMinb
rbifactor

simulate from bi-factor copula model
mvtPfact_nllk

negative log-likelihood for the p-factor Gaussian/t model
oblique_fa

Gaussian oblique factor structure correlation matrix
residDep

correlation matrix for 1-factor plus 1-truncated vine (for residual dependence)
oblique_pp_par2load

oblique factor correlation structure for d variables and m groups include determinant and inverse
onefactorEstWithProxy

Parameter estimation for 1-factor copula with estimated latent variables using VineCopula::BiCopSeelct
qcondbvtcop

C_[2|1]^[-1](p|u) for bivariate Student t copula
pfactor_nllk

log-likelihood Gaussian p-factor structure correlation matrix
pfactor_fa

Gaussian p-factor structure correlation matrix
qcondFrank

C_[2|1]^[-1](p|u) for bivariate Frank copula
frank_beta2cpar

Frank: Blomqvist's beta to copula parameter
bifactor_nllk

log-likelihood Gaussian bi-factor structure correlation matrix
zetaPlot

Plot zeta(alpha) against alpha
bifactorcop_nllk

negative log-likelihood of bi-factor structured factor copula and derivatives computed in f90 for input to posDefHessMinb
r1factor

simulate from 1-factor copula model with different linking copula families
rainstorm

Precipitation by rainstorm at 28 stations
mvtBifact_nllk

negative log-likelihood for the bi-factor Gaussian/t model
gumbel_rhoS2cpar

Gumbel: Spearman rho to copula parameter
gumbel_beta2cpar

Gumbel: Blomqvist's beta to copula parameter
d1factcop

Integrand for 1-factor copula with 1-parameter bivariate linking copula families; or for m-parameter bivariate linking copulas
cparBounds

lower and upper bounds for copula parameters (1-parameter, 2-parameter families)
ml1factor

max likelihood (min negative log-likelihood) for 1-factor copula model
ml1factor_f90

min negative log-likelihood for 1-factor copula with nlm()
oblique_grad_fa

Gaussian oblique factor structure correlation matrix
zetaDep

Empirical version of zeta(alpha) tail-weighted dependence measure
mvtPfact

MLE in a MVt model with a p-factor correlation structure
rhoS

Spearman's rho for bivariate copula with parameter cpar
oblique_grad_nllk

log-likelihood Gaussian oblique factor structure correlation matrix
rmvn

Random multivariate normal (standard N(0,1) margins)
semiCor

Semi-correlations for two variables
semiCorTable

Semi-correlation table for a multivariate data set
frank_rhoS2cpar

Frank: Spearman rho to copula parameter
zetaDepC

Upper Tail-weighted dependence measure zeta(C,alpha)
oblique_par2load

oblique factor correlation structure for d variables and m groups
tailDep

Tail dependence parameter estimation
oblique_nllk

log-likelihood Gaussian oblique factor structure correlation matrix
posDefHessMin

Minimization with modified Newton-Raphson iterations, Hessian is modified to be positive definite at each step. Algorithm and code produced by Pavel Krupskii (2013) see PhD thesis Krupskii (2014), UBC and Section 6.2 of # Joe (2014) Dependence Models with Copulas. Chapman&Hall/CRC
posDefHessMinb

Version with ifixed as argument
uscore

Rank-based uniform scores transform
mvtBifact

MLE for multivariate normal/t with a bi-factor or nested factor correlation structure
ml1factor_v2

min negative log-likelihood for 1-factor copula model (some parameters can be fixed)
onefactorcop_nllk

negative log-likelihood of 1-factor copula for input to posDefHessMin and posDefHessMinb
pcor2load

Partial correlation representation to loadings for p-factor
rmvt

Random multivariate t (standard t(nu) margins)
rnestfactor

Simulate data from nested copula or Gaussian model
bb1_tau2eqtd

BB1, given 0<tau<1, find theta and delta with lower tail dependence equal upper tail dependence
bb1_cpar2td

BB1 copula parameter (theta,delta) to tail dependence parameters
bifactorScore

Proxies for bi-factor copula model based on Gaussian bi-factor score
bifactor_fa

Gaussian bi-factor structure correlation matrix
DJ20142016gf

GARCH-filtered log returns for Dow Jones stocks 2014-2016
bifactorEstWithProxy

Sequential parameter estimation for bi-factor copula with estimated latent variables using VineCopula::BiCopSelect
bifactor2cor

Bi-factor partial correlations to correlation matrix
bifactor2cor_v2

Bi-factor partial correlations to correlation matrix version 2, using the inverse and determinant of a smaller matrix
RVtrunc2cor

compute correlation matrix from 2-truncated R-vine
bb1_td2cpar

BB1 tail dependence parameters to copula parameter (theta,delta)
corvec2mat

Convert from correlations in vector form to a correlation matrix
corDis

Discrepancy of model-based and observed correlation matrices based on Gaussian log-likelihood
euro07

log returns and GARCH-filtered log returns for some Euro markets 2007
latentUpdate1factor

Compute new proxies for 1-factor copula based on the mean of observations
isPosDef

Check if a square symmetric matrix is positive definite
factor1trvine_nllk

negative log-likelihood with gradient and Hessian computed in f90 for copula from 1-factor/1-truncated vine (tree for residual dependence conditional on a latent variable); models included are BB1 for latent with Frank or Gaussian(bvncop) for truncated vine residual dependence
latentUpdateBifactor

Conditional expectation proxies for bi-factor copula models with linking copulas in different copula families
latentUpdate1factor1

Compute new proxies for 1-factor copula based on the mean of observations
bvnSemiCor

Semi-correlation for bivariate normal/Gaussian distribution