Learn R Programming

FastBandChol (version 0.1.1)

banded.sample: Computes banded sample covariance matrix

Description

Estimates a covariance matrix by banding the sample covariance matrix

Usage

banded.sample(X, bandwidth, centered = FALSE)

Arguments

X
A data matrix with $n$ rows and $p$ columns. Rows are assumed to be independent realizations from a $p$-variate distribution with covariance $\Sigma$.
bandwidth
A positive integer. Must be less than $p-1$.
centered
Logical. Is data matrix centered? Default is centered = FALSE

Value

A list with
est
The estimated covariance matrix.

Examples

Run this code
## set sample size and dimension
n=20
p=100

## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[l,m] = .5^(abs(l-m))
  }
}

## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))

## compute estimate
out2 = banded.sample(X, bandwidth=4)

Run the code above in your browser using DataLab