This function computes the covariance of the stationary distribution of the state when kernel is the exponential covariance.
Construct_W0_exp(sigma2,lambda)
W0 matrix.
the variance parameter.
the transformed range parameter.
tools:::Rd_package_author("FastGaSP")
Maintainer: tools:::Rd_package_maintainer("FastGaSP")
Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models. Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.
M. Gu, Y. Xu (2019), fast nonseparable Gaussian stochastic process with application to methylation level interpolation. Journal of Computational and Graphical Statistics, In Press, arXiv:1711.11501.
Campagnoli P, Petris G, Petrone S. (2009), Dynamic linear model with R. Springer-Verlag New York.