library(FastGaSP)
library(rstiefel)
matern_5_2_funct <- function(d, beta_i) {
cnst <- sqrt(5.0)
matOnes <- matrix(1, nrow = nrow(d), ncol = ncol(d))
result <- cnst * beta_i * d
res <- (matOnes + result + (result^2) / 3) * exp(-result)
return(res)
}
n=200
k=8
d=4
beta_real=0.01
sigma_real=1
sigma_0_real=sqrt(.01)
input=seq(1,n,1)
R0_00=as.matrix(abs(outer(input,input,'-')))
R_r = matern_5_2_funct(R0_00, beta_real)
L_sample = t(chol(R_r))
kernel_type='matern_5_2'
input=sort(input)
delta_x=input[2:length(input)]-input[1:(length(input)-1)]
A=rustiefel(k, d) ##sample from Stiefel manifold
Factor=matrix(0,d,n)
for(i in 1: d){
Factor[i,]=sigma_real^2*L_sample%*%rnorm(n)
}
output=A
##constucting the gppca.model
gppca_obj <- gppca(input, output, d, shared_params = TRUE,est_d=FALSE)
Run the code above in your browser using DataLab