Learn R Programming

FastImputation (version 2.2.1)

CovarianceWithMissing: Estimate covariance when data is missing

Description

Ignoring missing values can lead to biased estimates of the covariance. Lounici (2012) gives an unbiased estimator when the data has missing values.

Usage

CovarianceWithMissing(x)

Value

matrix, unbiased estimate of the covariance.

Arguments

x

matrix or data.frame, data with each row an observation and each column a variable.

Author

Stephen R. Haptonstahl srh@haptonstahl.org

References

High-dimensional covariance matrix estimation with missing observations. Karim Lounici. 2012.