FastJM
The FastJM package implements efficient computation of semi-parametric
joint model of longitudinal and competing risks data. To view a brief
guide on the purpose and use of this package, please refer to our
introductory video.
Examples
Single-biomarker joint model (jmcs)
The FastJM package comes with several simulated datasets. To fit a
joint model, we use jmcs function. In the example below, we are using
the following built-in data sets:
- ydata: longitudinal data for a single biomarker per patient
- cdata: competing risks time-to-event data per patient
require(FastJM)
#> Loading required package: FastJM
#> Loading required package: survival
#> Loading required package: MASS
#> Loading required package: statmod
#> Loading required package: magrittr
require(survival)
data(ydata)
data(cdata)
fit <- jmcs(ydata = ydata, cdata = cdata,
long.formula = response ~ time + gender + x1 + race,
surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
random = ~ time| ID)
fit
#>
#> Call:
#> jmcs(ydata = ydata, cdata = cdata, long.formula = response ~ time + gender + x1 + race, random = ~time | ID, surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race)
#>
#> Data Summary:
#> Number of observations: 3067
#> Number of groups: 1000
#>
#> Proportion of competing risks:
#> Risk 1 : 34.9 %
#> Risk 2 : 29.8 %
#>
#> Numerical intergration:
#> Method: pseudo-adaptive Guass-Hermite quadrature
#> Number of quadrature points: 6
#>
#> Model Type: joint modeling of longitudinal continuous and competing risks data
#>
#> Model summary:
#> Longitudinal process: linear mixed effects model
#> Event process: cause-specific Cox proportional hazard model with non-parametric baseline hazard
#>
#> Loglikelihood: -8989.389
#>
#> Fixed effects in the longitudinal sub-model: response ~ time + gender + x1 + race
#>
#> Estimate SE Z value p-val
#> (Intercept) 2.01853 0.05704 35.38803 0.0000
#> time 0.98292 0.03147 31.22885 0.0000
#> genderMale -0.07766 0.05860 -1.32527 0.1851
#> x1 -1.47810 0.05851 -25.26356 0.0000
#> raceWhite 0.04527 0.05911 0.76581 0.4438
#>
#> Estimate SE Z value p-val
#> sigma^2 0.49182 0.01793 27.43751 0.0000
#>
#> Fixed effects in the survival sub-model: Surv(surv, failure_type) ~ x1 + gender + x2 + race
#>
#> Estimate SE Z value p-val
#> x1_1 0.54672 0.18540 2.94892 0.0032
#> genderMale_1 -0.18781 0.11935 -1.57359 0.1156
#> x2_1 -1.10450 0.12731 -8.67602 0.0000
#> raceWhite_1 -0.10027 0.11802 -0.84960 0.3955
#> x1_2 0.62986 0.20064 3.13927 0.0017
#> genderMale_2 0.10834 0.13065 0.82926 0.4070
#> x2_2 -1.76738 0.15245 -11.59296 0.0000
#> raceWhite_2 0.03194 0.13049 0.24479 0.8066
#>
#> Association parameters:
#> Estimate SE Z value p-val
#> (Intercept)_1 0.93973 0.12160 7.72809 0.0000
#> time_1 0.31691 0.19318 1.64051 0.1009
#> (Intercept)_2 0.96486 0.13646 7.07090 0.0000
#> time_2 0.03772 0.24137 0.15629 0.8758
#>
#>
#> Random effects:
#> Formula: ~time | ID
#> Estimate SE Z value p-val
#> (Intercept) 0.52981 0.03933 13.47048 0.0000
#> time 0.25885 0.02262 11.44217 0.0000
#> (Intercept):time -0.02765 0.02529 -1.09330 0.2743The FastJM package can make dynamic prediction given the longitudinal
history information. Below is a toy example for competing risks data.
Conditional cumulative incidence probabilities for each failure will be
presented.
ND <- ydata[ydata$ID %in% c(419, 218), ]
ID <- unique(ND$ID)
NDc <- cdata[cdata$ID %in% ID, ]
survfit <- survfitjmcs(fit,
ynewdata = ND,
cnewdata = NDc,
u = seq(3, 4.8, by = 0.2),
method = "GH",
obs.time = "time")
survfit
#>
#> Prediction of Conditional Probabilities of Event
#> based on the pseudo-adaptive Guass-Hermite quadrature rule with 6 quadrature points
#> $`218`
#> times CIF1 CIF2
#> 1 2.441634 0.00000000 0.0000000
#> 2 3.000000 0.09629588 0.1110072
#> 3 3.200000 0.11862304 0.1369133
#> 4 3.400000 0.15142590 0.1679708
#> 5 3.600000 0.18413127 0.1839693
#> 6 3.800000 0.21269800 0.2096528
#> 7 4.000000 0.23043413 0.2249182
#> 8 4.200000 0.25459317 0.2500146
#> 9 4.400000 0.25811390 0.2599361
#> 10 4.600000 0.28856883 0.2896654
#> 11 4.800000 0.30829095 0.3134531
#>
#> $`419`
#> times CIF1 CIF2
#> 1 2.432155 0.00000000 0.00000000
#> 2 3.000000 0.02972511 0.02073398
#> 3 3.200000 0.03757608 0.02601222
#> 4 3.400000 0.05003929 0.03270990
#> 5 3.600000 0.06332292 0.03635232
#> 6 3.800000 0.07563241 0.04273814
#> 7 4.000000 0.08376596 0.04677029
#> 8 4.200000 0.09564633 0.05378957
#> 9 4.400000 0.09743720 0.05674168
#> 10 4.600000 0.11449841 0.06602758
#> 11 4.800000 0.12639379 0.07432217To assess the prediction accuracy of the fitted joint model, we may run
PEjmcs to calculate the Brier score.
## evaluate prediction accuracy of fitted joint model using cross-validated Brier Score
PE <- PEjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
obs.time = "time", method = "GH",
quadpoint = NULL, maxiter = 1000, n.cv = 3,
survinitial = TRUE)
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(PE, error = "Brier")
#>
#> Expected Brier Score at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time Brier Score 1 Brier Score 2
#> 1 3.6 0.05888837 0.03483090
#> 2 4.0 0.08889966 0.05428274
#> 3 4.4 0.10517866 0.06865793An alternative to assess the prediction accuracy is to run MAEQjmcs to
calculate the prediction error by comparing the predicted and empirical
risks stratified on different risk groups based on quantile of the
predicted risks.
## evaluate prediction accuracy of fitted joint model using cross-validated mean absolute prediction error
MAEQ <- MAEQjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
obs.time = "time", method = "GH",
quadpoint = NULL, maxiter = 1000, n.cv = 3,
survinitial = TRUE)
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(MAEQ, digits = 3)
#>
#> Sum of absolute error across quintiles of predicted risk scores at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time CIF1 CIF2
#> 1 3.6 0.083 0.120
#> 2 4.0 0.178 0.161
#> 3 4.4 0.191 0.152We may also calculate the area under the ROC curve (AUC) to assess the discrimination measure of joint models.
## evaluate prediction accuracy of fitted joint model using cross-validated mean AUC
AUC <- AUCjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
obs.time = "time", method = "GH",
quadpoint = NULL, maxiter = 1000, n.cv = 3, metric = "AUC")
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(AUC, digits = 3)
#>
#> Expected AUC at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time AUC1 AUC2
#> 1 3.6 0.7366710 0.7097309
#> 2 4.0 0.7154871 0.6760296
#> 3 4.4 0.7336741 0.7254964Alternatively, we can also calculate concordance index (Cindex) as another discrimination measure.
## evaluate prediction accuracy of fitted joint model using cross-validated mean Cindex
Cindex <- AUCjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
obs.time = "time", method = "GH",
maxiter = 1000, n.cv = 3, metric = "Cindex")
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(Cindex, digits = 3)
#>
#> Expected Cindex at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time Cindex1 Cindex2
#> 1 3.6 0.6864341 0.6772933
#> 2 4.0 0.6859882 0.6765425
#> 3 4.4 0.6862253 0.6757857Multi-biomarker Joint Model (mvjmcs)
To fit a joint model with multiple longitudinal outcomes and competing
risks, we can use the mvjmcs function. In the example below, we are
using the following built-in data sets:
- mvydata: longitudinal data for multiple biomarkers per patient
- mvcdata: competing risks time-to-event data per patient
data(mvydata)
data(mvcdata)
library(FastJM)
mvfit <- mvjmcs(ydata = mvydata, cdata = mvcdata,
long.formula = list(Y1 ~ X11 + X12 + time,
Y2 ~ X11 + X12 + time),
random = list(~ time | ID,
~ 1 | ID),
surv.formula = Surv(survtime, cmprsk) ~ X21 + X22,
maxiter = 1000, opt = "optim",
tol = 1e-3, print.para = FALSE)
#> runtime is:
#> Time difference of 40.09689 secs
mvfit
#>
#> Call:
#> mvjmcs(ydata = mvydata, cdata = mvcdata, long.formula = list(Y1 ~ X11 + X12 + time, Y2 ~ X11 + X12 + time), random = list(~time | ID, ~1 | ID), surv.formula = Surv(survtime, cmprsk) ~ X21 + X22, maxiter = 1000, opt = "optim", tol = 0.001, print.para = FALSE)
#>
#> Data Summary:
#> Number of observations: 5645
#> Number of groups: 800
#>
#> Proportion of competing risks:
#> Risk 1 : 41.62 %
#> Risk 2 : 11.25 %
#>
#> Model Type: joint modeling of multivariate longitudinal continuous and competing risks data
#>
#> Model summary:
#> Longitudinal process: linear mixed effects model
#> Event process: cause-specific Cox proportional hazard model with non-parametric baseline hazard
#>
#> Fixed effects in the longitudinal sub-model: list(Y1 ~ X11 + X12 + time, Y2 ~ X11 + X12 + time)
#>
#> Estimate SE Z value p-val
#> (Intercept)_bio1 4.97406 0.05388 92.32120 0.0000
#> X11_bio1 1.46539 0.08053 18.19764 0.0000
#> X12_bio1 1.99793 0.01429 139.79571 0.0000
#> time_bio1 0.84275 0.03946 21.35698 0.0000
#> (Intercept)_bio2 9.97547 0.04927 202.44649 0.0000
#> X11_bio2 0.97966 0.07331 13.36293 0.0000
#> X12_bio2 2.00955 0.01309 153.48364 0.0000
#> time_bio2 0.99380 0.00455 218.63164 0.0000
#>
#> Estimate SE Z value p-val
#> sigma^2_bio1 0.49304 0.00018 2734.36540 0.0000
#> sigma^2_bio2 0.49758 0.00965 51.55778 0.0000
#>
#> Fixed effects in the survival sub-model: Surv(survtime, cmprsk) ~ X21 + X22
#>
#> Estimate SE Z value p-val
#> X21_1 0.93618 0.13480 6.94491 0.0000
#> X22_1 0.51147 0.03167 16.15030 0.0000
#> X21_2 -0.21683 0.24922 -0.87006 0.3843
#> X22_2 0.48481 0.05923 8.18515 0.0000
#>
#> Association parameters:
#> Estimate SE Z value p-val
#> (Intercept)_1bio1 0.49981 0.07535 6.63293 0.0000
#> time_1bio1 0.70822 0.08502 8.32969 0.0000
#> (Intercept)_1bio2 -0.54676 0.07972 -6.85843 0.0000
#> (Intercept)_2bio1 0.63217 0.13344 4.73764 0.0000
#> time_2bio1 0.66226 0.16726 3.95956 0.0001
#> (Intercept)_2bio2 -0.48377 0.15879 -3.04662 0.0023
#>
#>
#> Random effects:
#> bio 1 : ~time | ID
#> bio 2 : ~1 | ID
#> Estimate SE Z value p-val
#> Intercept1 1.02117 0.06469 15.78498 0.0000
#> time1 0.91580 0.05834 15.69838 0.0000
#> Intercept2 0.88206 0.05325 16.56574 0.0000
#> Intercept1:time1 -0.09307 0.04532 -2.05384 0.0400
#> Intercept1:Intercept2 0.04354 0.04052 1.07457 0.2826
#> time1:Intercept2 -0.06569 0.04224 -1.55510 0.1199We can extract the components of the model as follows:
# Longitudinal fixed effects
fixef(mvfit, process = "Longitudinal")
#> (Intercept)_bio1 X11_bio1 X12_bio1 time_bio1 (Intercept)_bio2 X11_bio2
#> 4.9740592 1.4653916 1.9979294 0.8427526 9.9754651 0.9796637
#> X12_bio2 time_bio2
#> 2.0095547 0.9937970
summary(mvfit, process = "Longitudinal")
#> Longitudinal coef SE 95%Lower 95%Upper p-values
#> 1 (Intercept)_bio1 4.9741 0.0539 4.8685 5.0797 0
#> 2 X11_bio1 1.4654 0.0805 1.3076 1.6232 0
#> 3 X12_bio1 1.9979 0.0143 1.9699 2.0259 0
#> 4 time_bio1 0.8428 0.0395 0.7654 0.9201 0
#> 5 (Intercept)_bio2 9.9755 0.0493 9.8789 10.0720 0
#> 6 X11_bio2 0.9797 0.0733 0.8360 1.1234 0
#> 7 X12_bio2 2.0096 0.0131 1.9839 2.0352 0
#> 8 time_bio2 0.9938 0.0045 0.9849 1.0027 0
#> 9 sigma^2_bio1 0.4930 0.0002 0.4927 0.4934 0
#> 10 sigma^2_bio2 0.4976 0.0097 0.4787 0.5165 0
# Survival fixed effects
fixef(mvfit, process = "Event")
#> $Risk1
#> X21_1 X22_1
#> 0.9361783 0.5114748
#>
#> $Risk2
#> X21_2 X22_2
#> -0.2168317 0.4848128
summary(mvfit, process = "Event")
#> Survival coef exp(coef) SE(coef) 95%Lower 95%Upper 95%exp(Lower) 95%exp(Upper) p-values
#> 1 X21_1 0.9362 2.5502 0.1348 0.6720 1.2004 1.9581 3.3214 0.0000
#> 2 X22_1 0.5115 1.6677 0.0317 0.4494 0.5735 1.5674 1.7746 0.0000
#> 3 X21_2 -0.2168 0.8051 0.2492 -0.7053 0.2716 0.4940 1.3121 0.3843
#> 4 X22_2 0.4848 1.6239 0.0592 0.3687 0.6009 1.4459 1.8238 0.0000
#> 5 (Intercept)_1bio1 0.4998 1.6484 0.0754 0.3521 0.6475 1.4221 1.9108 0.0000
#> 6 time_1bio1 0.7082 2.0304 0.0850 0.5416 0.8749 1.7187 2.3986 0.0000
#> 7 (Intercept)_1bio2 -0.5468 0.5788 0.0797 -0.7030 -0.3905 0.4951 0.6767 0.0000
#> 8 (Intercept)_2bio1 0.6322 1.8817 0.1334 0.3706 0.8937 1.4487 2.4442 0.0000
#> 9 time_2bio1 0.6623 1.9392 0.1673 0.3344 0.9901 1.3972 2.6915 0.0001
#> 10 (Intercept)_2bio2 -0.4838 0.6165 0.1588 -0.7950 -0.1725 0.4516 0.8415 0.0023
# Random effects for first few subjects
head(ranef(mvfit))
#> (Intercept)_bio1 time_bio1 (Intercept)_bio2
#> 1 1.2401906 -0.5307380 -1.20266480
#> 2 -0.5271435 -0.3345339 1.56044174
#> 3 -1.1560670 0.3260969 0.17152013
#> 4 -1.4226064 -1.9399773 -0.09515163
#> 5 0.2392488 -1.9542406 0.02231513
#> 6 -0.1187828 -0.0254132 0.06451794The FastJM package can now make dynamic prediction in the presence of
multiple longitudinal outcomes. Below is a toy example for competing
risks data. Conditional cumulative incidence probabilities for each
failure will be presented.
require(dplyr)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following object is masked from 'package:MASS':
#>
#> select
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
set.seed(08252025)
sampleID <- sample(mvcdata$ID, 5, replace = FALSE)
subcdata <- mvcdata %>%
dplyr::filter(ID %in% sampleID)
subydata <- mvydata %>%
dplyr::filter(ID %in% sampleID)
### Set up a landmark time of 4.75 and make predictions at time u
survmvfit <- survfitmvjmcs(mvfit, seed = 100, ynewdata = subydata, cnewdata = subcdata,
u = c(7, 8, 9), Last.time = 4.75, obs.time = "time")
survmvfit
#>
#> Prediction of Conditional Probabilities of Event
#> based on the first order approximation
#> $`177`
#> times CIF1 CIF2
#> 1 4.75 0.00000000 0.000000000
#> 2 7.00 0.01835440 0.003145087
#> 3 8.00 0.02632333 0.004747017
#> 4 9.00 0.02939841 0.005963632
#>
#> $`182`
#> times CIF1 CIF2
#> 1 4.75 0.0000000 0.00000000
#> 2 7.00 0.2463582 0.03393494
#> 3 8.00 0.3325719 0.04805378
#> 4 9.00 0.3630881 0.05807832
#>
#> $`260`
#> times CIF1 CIF2
#> 1 4.75 0.00000000 0.00000000
#> 2 7.00 0.03315209 0.01750073
#> 3 8.00 0.04724973 0.02623700
#> 4 9.00 0.05262962 0.03281393
#>
#> $`305`
#> times CIF1 CIF2
#> 1 4.75 0.00000000 0.00000000
#> 2 7.00 0.02876153 0.01545058
#> 3 8.00 0.04104952 0.02319795
#> 4 9.00 0.04574922 0.02904055
#>
#> $`800`
#> times CIF1 CIF2
#> 1 4.75 0.00000000 0.000000000
#> 2 7.00 0.01293233 0.002102670
#> 3 8.00 0.01857301 0.003178285
#> 4 9.00 0.02075384 0.003996402Currently, validation features (e.g., survfitjmcs, PEjmcs, AUCjmcs) are implemented for models of class jmcs. Extension to mvjmcs is under active development and will be available later this year.
Simulate Data (Optional)
In order to create simulated data for mvjmcs, we can use the
simmvJMdata function, which creates longitudinal and survival data as
a nested list (which are unpacked the this example). When first calling
the function, it provides censoring and risk rates.
# Simulate data
sim <- simmvJMdata(seed = 100, N = 50) # returns list of cdata and ydata for a sample size of 50
#> The censoring rate is: 44%
#> The risk 1 rate is: 48%
#> The risk 2 rate is: 8%
c_data <- sim$mvcdata # survival-side data, one row per ID
y_data <- sim$mvydata # longitudinal measurements (multiple rows per ID)Below is the simulated longitudinal data for multiple biomarkers, wherein Y1 and Y2 represent our biomarkers and X11 and X12 represent measurement-level predictors for the longitudinal submodel.
head(y_data)
#> ID time Y1 Y2 X11 X12
#> 1 1 0.0 2.325975 3.493627 0 -2.347892
#> 2 1 0.7 2.328122 4.649502 0 -2.347892
#> 3 1 1.4 2.793674 6.112850 0 -2.347892
#> 4 1 2.1 2.221392 5.375753 0 -2.347892
#> 5 1 2.8 1.864348 4.481401 0 -2.347892
#> 6 1 3.5 3.988955 5.496069 0 -2.347892Below is the simulated survival data wherein X21 and X22 represent patient-level predictors for the survival model.
head(c_data)
#> ID survtime cmprsk X21 X22
#> 1 1 6.10116281 0 0 -2.3478921
#> 2 2 0.05456028 1 1 0.1826885
#> 3 3 6.52978656 0 1 2.3791087
#> 4 4 0.04942950 1 1 2.7961091
#> 5 5 6.96785721 0 0 -3.8530560
#> 6 6 7.20378227 0 0 1.1237335