# Data setting
set.seed(1)
d = 1
n = 1000
m = 50
rho = 1
X = matrix(runif(n*d, 0, 1), nrow = n, ncol = d)
y = as.vector(sin(2*pi*rowMeans(X)^3) + rnorm(n, 0, 0.1))
K = make_kernel(X, kernel = "gaussian", rho = rho)
# Example: nystrom
K_nystrom = approx_kernel(K = K, opt = "nystrom", m = m, d = d, rho = rho, n_threads = 1)
class(K_nystrom)
print(K_nystrom)
Run the code above in your browser using DataLab