# NOT RUN {
data(Carlson)
## Specify the order of each factor
Carlson$newRecordF<- factor(Carlson$newRecordF,ordered=TRUE,
levels=c("YesLC", "YesDis","YesMP",
"noLC","noDis","noMP","noBusi"))
Carlson$promise <- factor(Carlson$promise,ordered=TRUE,levels=c("jobs","clinic","education"))
Carlson$coeth_voting <- factor(Carlson$coeth_voting,ordered=FALSE,levels=c("0","1"))
Carlson$relevantdegree <- factor(Carlson$relevantdegree,ordered=FALSE,levels=c("0","1"))
## Run cv.CausalANOVA
# }
# NOT RUN {
cv.fit <- cv.CausalANOVA(won ~ newRecordF + promise + coeth_voting + relevantdegree,
data=Carlson,
pair.id=Carlson$contestresp,diff=TRUE, nway=2)
cv.fit
plot(cv.fit)
# }
# NOT RUN {
fit <- CausalANOVA(won ~ newRecordF + promise + coeth_voting + relevantdegree,
data=Carlson,
pair.id=Carlson$contestresp,diff=TRUE, nway=2,cost=0.15)
## Or when we need selection probabilities.
# }
# NOT RUN {
fit <- CausalANOVA(won ~ newRecordF + promise + coeth_voting + relevantdegree,
data=Carlson,
pair.id=Carlson$contestresp,diff=TRUE,nway=2,cost=0.15,
select.prob=TRUE,boot=500,block.id=Carlson$respcodeS)
# }
# NOT RUN {
summary(fit)
# }
# NOT RUN {
## plot
plot(fit,fac.name=c("newRecordF","coeth_voting"))
# }
# NOT RUN {
## compute AMIEs
amie1 <- AMIE(fit,fac.name=c("promise","newRecordF"),
level.name=c("jobs","noLC"),
base.name=c("jobs","YesLC"))
amie2 <- AMIE(fit,fac.name=c("newRecordF","coeth_voting"),
level.name=c("noBus","1"),
base.name=c("noMP","0"))
# }
Run the code above in your browser using DataLab