Learn R Programming

FlexGAM (version 0.7.2)

plot.flexgam: Plots object of class flexgam.

Description

Plots resulting response (link) function or estimated smooth effects of objects of class flexgam.

Usage

# S3 method for flexgam
plot(x, type=c("response","covariate"), ci = TRUE,  rug = TRUE, ...)

Arguments

x

Object of class flexgam.

type

Whether the response function or the smooth covariate effects should be plotted.

ci

Include confidence intervals?

rug

Include rug plots?

...

Standard plot add-ons should work. ylab and xlab check for the length of the smooth predictor.

Value

Plots

Details

Plots either the estimated response function or the estimated smooth covariate effects. Valid confidence intervals are currently only plotted for P-splines.

References

Spiegel, Elmar, Thomas Kneib and Fabian Otto-Sobotka. Generalized additive models with flexible response functions. Statistics and Computing (2017). https://doi.org/10.1007/s11222-017-9799-6

See Also

flexgam

Examples

Run this code
# NOT RUN {
set.seed(1)
n <- 1000
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
eta_orig <- -1 + 2*sin(6*x1) + exp(x2) + x3
pi_orig <- pgamma(eta_orig, shape=2, rate=sqrt(2))
y <- rbinom(n,size=1,prob=pi_orig)

Data <- data.frame(y,x1,x2,x3)
formula <- y ~ s(x1,k=20,bs="ps") + s(x2,k=20,bs="ps") + x3

# Fix smoothing parameters to save computational time.
control2 <- list("fix_smooth" = TRUE, "quietly" = TRUE, "sm_par_vec" = 
                     c("lambda" = 100, "s(x1)" = 2000, "s(x2)" = 9000))

set.seed(2)
model_2 <- flexgam(formula=formula, data=Data, type="FlexGAM2", 
                   family=binomial(link=logit), control = control2)

plot(model_2,type="response")
plot(model_2,type="covariate")

# }

Run the code above in your browser using DataLab