h <- 10
agg_order <- 4
tmp <- tetools(agg_order)
kt <- tmp$dim["kt"]
# Simulate vector (temporal case)
vec <- rnorm(kt*h)
out <- res2matrix(vec, agg_order) # matrix h x kt
# Simulate (n x kt) matrix (cross-temporal case) with n = 3
mat <- rbind(rnorm(kt*h), rnorm(kt*h), rnorm(kt*h))
out <- res2matrix(mat, agg_order) # matrix h x (3*kt)
# Input: 4 (forecast horizons) vectors with 4*10 elements
input <- list(rnorm(4*10), rnorm(4*10), rnorm(4*10), rnorm(4*10))
# Output: 1 vector with 4*10 elements
out <- arrange_hres(input)
# Matrix version
input <- list(matrix(rnorm(4*10*3), 4*10), matrix(rnorm(4*10*3), 4*10),
matrix(rnorm(4*10*3), 4*10), matrix(rnorm(4*10*3), 4*10))
out <- arrange_hres(input)
Run the code above in your browser using DataLab