Shrinkage of the covariance matrix according to the Oracle Approximating Shrinkage (OAS) of Chen et al. (2009) and Ando and Xiao (2023).
shrink_oasd(x, mse = TRUE)
A shrunk covariance matrix.
A numeric matrix containing the in-sample residuals.
If TRUE
(default), the residuals used to compute the covariance
matrix are not mean-corrected.
Ando, S., and Xiao, M. (2023), High-dimensional covariance matrix estimation: shrinkage toward a diagonal target. IMF Working Papers, 2023(257), A001.
Chen, Y., Wiesel, A., and Hero, A. O. (2009), Shrinkage estimation of high dimensional covariance matrices, 2009 IEEE international conference on acoustics, speech and signal processing, 2937–2940. IEEE.
Utilities:
FoReco2matrix()
,
aggts()
,
balance_hierarchy()
,
commat()
,
csprojmat()
,
cstools()
,
ctprojmat()
,
cttools()
,
df2aggmat()
,
lcmat()
,
recoinfo()
,
res2matrix()
,
set_bounds()
,
shrink_estim()
,
teprojmat()
,
tetools()
,
unbalance_hierarchy()