Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (0.3.0) of this package.
Take me there.
ForLion
ForLion R package
Copy Link
Link to current version
Version
Version
0.3.0
0.2.0
0.1.0
Install
install.packages('ForLion')
Monthly Downloads
257
Version
0.2.0
License
MIT + file LICENSE
Maintainer
Siting Lin
Last Published
June 10th, 2025
Functions in ForLion (0.2.0)
Search all functions
liftoneDoptimal_GLM_func
Lift-one algorithm for D-optimal approximate design
nu1_logit_self
function to calculate the first derivative of nu function given eta for logit link
nu2_logit_self
function to calculate the second derivative of nu function given eta for logit link
MLM_Exact_Design
rounding algorithm for multinomial logit models
nu1_log_self
function to calculate first derivative of nu function given eta for log link
nu1_identity_self
function to calculate first derivative of nu function given eta for identity link
nu2_loglog_self
function to calculate the second derivative of nu function given eta for loglog link
nu1_cauchit_self
function to calculate first derivative of nu function given eta for cauchit link
liftoneDoptimal_log_GLM_func
Lift-one algorithm for D-optimal approximate design in log scale
svd_inverse
SVD Inverse Of A Square Matrix
nu2_identity_self
function to calculate the second derivative of nu function given eta for identity link
nu2_log_self
function to calculate the second derivative of nu function given eta for log link
nu_identity_self
function to calculate w = nu(eta) given eta for identity link
nu1_loglog_self
function to calculate the first derivative of nu function given eta for log-log link
nu_log_self
function to calculate w = nu(eta) given eta for log link
xmat_discrete_self
Generate initial designs within ForLion algorithms
nu2_probit_self
function to calculate the second derivative of nu function given eta for probit link
liftoneDoptimal_MLM_func
function of liftone for multinomial logit model
print.design_output
Print Method for Design Output from ForLion Algorithms
polynomial_sol_J5
functions to solve 4th order polynomial function given coefficients
polynomial_sol_J4
functions to solve 3th order polynomial function given coefficients
nu_cauchit_self
function to calculate w = nu(eta) given eta for cauchit link
nu_logit_self
function to calculate w = nu(eta) given eta for logit link
nu1_probit_self
function to calculate the first derivative of nu function given eta for probit link
nu2_cauchit_self
function to calculate the second derivative of nu function given eta for cauchit link
print.list_output
Print Method for list_output Objects
polynomial_sol_J3
functions to solve 2th order polynomial function given coefficients
nu_loglog_self
function to calculate w = nu(eta) given eta for loglog link
nu_probit_self
function to calculate w = nu(eta) given eta for probit link
EW_Fi_MLM_func
function to generate the expected fisher information at one design point xi for multinomial logit models
EW_ForLion_GLM_Optimal
EW ForLion for generalized linear models
EW_liftoneDoptimal_MLM_func
function of EW liftone for multinomial logit model
EW_design_initial_MLM
function to generate a initial EW Design for multinomial logistic models
EW_liftoneDoptimal_GLM_func
EW Lift-one algorithm for D-optimal approximate design
EW_liftoneDoptimal_log_GLM_func
EW Lift-one algorithm for D-optimal approximate design in log scale
EW_dprime_func_self
function to calculate dEu/dx in the gradient of d(x, Xi), will be used in EW_ForLion_MLM_func() function
EW_design_initial_GLM
function to generate a initial EW Design for generalized linear models
EW_ForLion_MLM_Optimal
EW ForLion function for multinomial logit models
EW_Xw_maineffects_self
function for calculating X=h(x) and E_w=E(nu(beta^T h(x))) given a design point x=(1,x1,...,xd)^T
ForLion_MLM_Optimal
ForLion function for multinomial logit models
Fi_MLM_func
function to generate fisher information at one design point xi for multinomial logit models
GLM_Exact_Design
rounding algorithm for generalized linear models
discrete_rv_self
function to generate discrete uniform random variables for initial random design points in ForLion
dprime_func_self
function to calculate du/dx in the gradient of d(x, Xi), will be used in ForLion_MLM_func() function, details see Appendix C in Huang, Li, Mandal, Yang (2024)
design_initial_self
function to generate initial design with design points and the approximate allocation
ForLion-package
ForLion: 'ForLion' Algorithms to Find Optimal Experimental Designs with Mixed Factors
ForLion_GLM_Optimal
ForLion for generalized linear models
Xw_maineffects_self
function for calculating X=h(x) and w=nu(beta^T h(x)) given a design point x = (x1,...,xd)^T