Learn R Programming

ForestFit (version 0.6.1)

dgsm: Computing probability density function of the gamma shape mixture model

Description

Computes probability density function (pdf) of the gamma shape mixture (GSM) model. The general form for the pdf of the GSM model is given by $$f(x,{\Theta}) = \sum_{j=1}^{K}\omega_j \frac{\beta^j}{\Gamma(j)} x^{j-1} \exp\bigl( -\beta x\bigr),$$ where \(\Theta=(\omega_1,\dots,\omega_K, \beta)^T\) is the parameter vector and known constant \(K\) is the number of components. The vector of mixing parameters is given by \(\omega=(\omega_1,\dots,\omega_K)^T\) where \(\omega_j\)s sum to one, i.e., \(\sum_{j=1}^{K}\omega_j=1\). Here \(\beta\) is the rate parameter that is equal for all components.

Usage

dgsm(data, omega, beta, log = FALSE)

Arguments

data

Vector of observations.

omega

Vector of the mixing parameters.

beta

The rate parameter.

log

If TRUE, then log(pdf) is returned.

Value

A vector of the same length as data, giving the pdf of the GSM model.

References

S. Venturini, F. Dominici, and G. Parmigiani, 2008. Gamma shape mixtures for heavy-tailed distributions, The Annals of Applied Statistics, 2(2), 756<U+2013>776.

Examples

Run this code
# NOT RUN {
data<-seq(0,20,0.1)
omega<-c(0.05, 0.1, 0.15, 0.2, 0.25, 0.25)
beta<-2
dgsm(data, omega, beta)
# }

Run the code above in your browser using DataLab