Learn R Programming

ForestFit (version 2.2.3)

pgsm: Computing cumulative distribution function of the gamma shape mixture model

Description

Computes cumulative distribution function (cdf) of the gamma shape mixture (GSM) model. The general form for the cdf of the GSM model is given by $$F(x,{\Theta}) = \sum_{j=1}^{K}\omega_j F(x,j,\beta),$$ where $$F(x,j,\beta) = \int_{0}^{x} \frac{\beta^j}{\Gamma(j)} y^{j-1} \exp\bigl( -\beta y\bigr) dy,$$ in which \(\Theta=(\omega_1,\dots,\omega_K, \beta)^T\) is the parameter vector and known constant \(K\) is the number of components. The vector of mixing parameters is given by \(\omega=(\omega_1,\dots,\omega_K)^T\) where \(\omega_j\)s sum to one, i.e., \(\sum_{j=1}^{K}\omega_j=1\). Here \(\beta\) is the rate parameter that is equal for all components.

Usage

pgsm(data, omega, beta, log.p = FALSE, lower.tail = TRUE)

Value

A vector of the same length as data, giving the cdf of the GSM model.

Arguments

data

Vector of observations.

omega

Vector of the mixing parameters.

beta

The rate parameter.

log.p

If TRUE, then log(cdf) is returned.

lower.tail

If FALSE, then 1-cdf is returned.

Author

Mahdi Teimouri

References

S. Venturini, F. Dominici, and G. Parmigiani, 2008. Gamma shape mixtures for heavy-tailed distributions, The Annals of Applied Statistics, 2(2), 756–776.

Examples

Run this code
data<-seq(0,20,0.1)
omega<-c(0.05, 0.1, 0.15, 0.2, 0.25, 0.25)
beta<-2
pgsm(data, omega, beta)

Run the code above in your browser using DataLab