Learn R Programming

ForestFit (version 2.2.3)

rgsm: Simulating realizations from the gamma shape mixture model

Description

Simulates realizations from a gamma shape mixture (GSM) model with probability density function given by $$f(x,{\Theta}) = \sum_{j=1}^{K}\omega_j \frac{\beta^j}{\Gamma(j)} x^{j-1} \exp\bigl( -\beta x\bigr),$$ where \(\Theta=(\omega_1,\dots,\omega_K, \beta)^T\) is the parameter vector and known constant \(K\) is the number of components. The vector of mixing parameters is given by \(\omega=(\omega_1,\dots,\omega_K)^T\) where \(\omega_j\)s sum to one, i.e., \(\sum_{j=1}^{K}\omega_j=1\). Here \(\beta\) is the rate parameter that is equal for all components.

Usage

rgsm(n, omega, beta)

Value

A vector of length n, giving random generated values from GSM model.

Arguments

n

Number of requested random realizations.

omega

Vector of the mixing parameters.

beta

The rate parameter.

Author

Mahdi Teimouri

References

S. Venturini, F. Dominici, and G. Parmigiani, 2008. Gamma shape mixtures for heavy-tailed distributions, The Annals of Applied Statistics, 2(2), 756–776.

Examples

Run this code
n<-100
omega<-c(0.05, 0.1, 0.15, 0.2, 0.25, 0.25)
beta<-2
rgsm(n, omega, beta)

Run the code above in your browser using DataLab