Learn R Programming

ForestFit (version 2.4.3)

rjsb: Simulating realizations from the Johnson's SB (JSB) distribution

Description

Simulates realizations from four-parameter JSB distribution with probability density function given by $$ f\bigl(x\big|\Theta\bigr) = \frac {\delta \lambda}{\sqrt{2\pi}(x-\xi)(\lambda+\xi-x)}\exp\Biggl\{-\frac{1}{2}\Bigg[\gamma+\delta\log \biggl(\frac{x-\xi}{\lambda+\xi-x}\biggr) \Bigg]^2\Biggr\}, $$ where \(\xi<x<\lambda+\xi\), \(\Theta=(\delta,\gamma,\lambda,\xi)^T\) with \(\delta>0\), \(\lambda> 0\), \(-\infty<\gamma<\infty\), and \(-\infty<\xi<\infty\).

Usage

rjsb(n, param)

Value

A vector of length n, giving random generated values from JSB distribution.

Arguments

n

Number of requested random realizations.

param

Vector of the parameters \(\delta\), \(\gamma\), \(\lambda\), and \(\xi\).

Author

Mahdi Teimouri

Examples

Run this code
n<-100
param<-c(delta<-1, gamma<-3, lambda<-12, xi<-5)
rjsb(n, param)

Run the code above in your browser using DataLab