storing.inds
function and a vector specifying the ladder/standard and finds the real peaks corresponding to the expected weights. The user may use this function to be able to load the ladder information in the global environment of R, so when using the overview
or score.easy
functions calculations will be performed faster, if the function is not used the program will calculate the ladder information each time overview
or score.easy
functions are used. Please! if using the confidence interval method ("ci"), which is NOT the default, once you have found the best parameters for the arguments to match your ladder using the detect.ladder
function, please pass those values to all the posterior functions, such as the 'dev' argument.
ladder.info.attach(stored, ladder, channel.ladder=NULL,
ci.upp=1.96, ci.low=1.96, dev=50, warn= FALSE, method="red",
ladd.init.thresh=200, env = parent.frame(), prog=TRUE, draw=TRUE)
storing.inds
function output.find.ladder
function.find.ladder
function. We recommend not to deal to much with it unless you identified special situations with your ladderCovarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Salazar W, Zalapa J. (2015) Fragma: An R package for fragment analysis. R package version 1.0. URL https://cran.r-project.org/web/packages/Fragman/.
Robert J. Henry. 2013. Molecular Markers in Plants. Wiley-Blackwell. ISBN 978-0-470-95951-0.
Ben Hui Liu. 1998. Statistical Genomics. CRC Press LLC. ISBN 0-8493-3166-8.
data(my.plants)
my.plants <- my.plants[1:2]
my.ladder <- c(120, 125, 129, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375)
ladder.info.attach(stored=my.plants, ladder=my.ladder)
Run the code above in your browser using DataLab