Learn R Programming

Funclustering (version 1.0.2)

mfpcaPlot: Plot multivariate functional pca

Description

This function plots the functional pca.

Usage

mfpcaPlot(pca, grid = c())

Arguments

pca

is the result of mfpca. In the univariate case mfpcaPlot use the package fda and will be similar to it's function "plot.pca.fd". In multivariate functional pca, we will make a graphic window for each dimension.

grid

specify how to divide the graphics window. grid=c(n,m) divided the widow in to n lines and m columns. If user don't specify grid then he must enter <Enter> to pass to the next graphic.

Examples

Run this code
# NOT RUN {
# Multivariate
# ---------  CanadianWeather (data from the package fda) --------
CWtime<- 1:365
CWrange<-c(1,365)
CWbasis <- create.fourier.basis(CWrange, nbasis=65)
harmaccelLfd <- vec2Lfd(c(0,(2*pi/365)^2,0), rangeval=CWrange)

# -- Build the curves ---
temp=CanadianWeather$dailyAv[,,"Temperature.C"]
CWfd1 <- smooth.basisPar(
CWtime, CanadianWeather$dailyAv[,,"Temperature.C"],CWbasis,
Lfdobj=harmaccelLfd, lambda=1e-2)$fd
precip=CanadianWeather$dailyAv[,,"Precipitation.mm"]
CWfd2 <- smooth.basisPar(
CWtime, CanadianWeather$dailyAv[,,"Precipitation.mm"],CWbasis,
Lfdobj=harmaccelLfd, lambda=1e-2)$fd

CWfd=list(CWfd1,CWfd2)

pca=mfpca(CWfd,nharm=4)
mfpcaPlot(pca,grid=c(2,2))
# }

Run the code above in your browser using DataLab