Learn R Programming

FunctionalCalibration (version 1.0.0)

Bayesian_Shrinkage: Bayesian Shrinkage

Description

A Bayesian shrinkage method applied to empirical coefficients \(d\), aiming to denoise them.

The shrinkage function is defined as: $$\delta(d) = \displaystyle \frac{(1 - p) \int_{\mathbb{R}} (\sigma u + d) \, g(\sigma u + d; \tau) \, \phi(u) \, du}{\frac{p}{\sigma} \phi\left( \frac{d}{\sigma} \right) + (1 - p) \int_{\mathbb{R}} g(\sigma u + d; \tau) \, \phi(u) \, du}$$

where \(\phi(x)\) is the probability density function of the standard normal distribution, and \(g(\theta; \tau)\) is the logistic density function.

Usage

Bayesian_Shrinkage(d, tau, p, sigma, MC = FALSE)

Value

A numeric value representing the result of the Bayesian shrinkage applied to the empirical coefficient \(d\).

Arguments

d

Numeric value of the empirical coefficient to be denoised.

tau

Numeric value of \(\tau\).

p

Numeric value of \(p\).

sigma

Numeric value of \(\sigma\).

MC

A logical evaluating to TRUE or FALSE indicating if the integrals will be approximated using Monte Carlo.