A Bayesian shrinkage method applied to empirical coefficients \(d\), aiming to denoise them.
The shrinkage function is defined as: $$\delta(d) = \displaystyle \frac{(1 - p) \int_{\mathbb{R}} (\sigma u + d) \, g(\sigma u + d; \tau) \, \phi(u) \, du}{\frac{p}{\sigma} \phi\left( \frac{d}{\sigma} \right) + (1 - p) \int_{\mathbb{R}} g(\sigma u + d; \tau) \, \phi(u) \, du}$$
where \(\phi(x)\) is the probability density function of the standard normal distribution, and \(g(\theta; \tau)\) is the logistic density function.
Bayesian_Shrinkage(d, tau, p, sigma, MC = FALSE)A numeric value representing the result of the Bayesian shrinkage applied to the empirical coefficient \(d\).
Numeric value of the empirical coefficient to be denoised.
Numeric value of \(\tau\).
Numeric value of \(p\).
Numeric value of \(\sigma\).
A logical evaluating to TRUE or FALSE indicating if the integrals will be approximated using Monte Carlo.