Learn R Programming

FuzzyClass (version 0.1.7)

FuzzyGeoNaiveBayes: Fuzzy Naive Bayes Geometric Classifier

Description

FuzzyGeoNaiveBayes Naive Bayes Geometric Classifier

Usage

FuzzyGeoNaiveBayes(train, cl, cores = 2, fuzzy = T)

Value

A vector of classifications

Arguments

train

matrix or data frame of training set cases.

cl

factor of true classifications of training set

cores

how many cores of the computer do you want to use (default = 2)

fuzzy

boolean variable to use the membership function

References

ferreira2023FuzzyClass

Examples

Run this code

set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rgeom(100,prob = 0.2),
                     vari2 = rgeom(100,prob = 0.2),
                     vari3 = rgeom(100,prob = 0.2), class = 1)
class2 <- data.frame(vari1 = rgeom(100,prob = 0.5),
                     vari2 = rgeom(100,prob = 0.5),
                     vari3 = rgeom(100,prob = 0.5), class = 2)
class3 <- data.frame(vari1 = rgeom(100,prob = 0.9),
                     vari2 = rgeom(100,prob = 0.9),
                     vari3 = rgeom(100,prob = 0.9), class = 3)
data <- rbind(class1,class2,class3)

# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)
Train <- subset(data, split == "TRUE")
Test <- subset(data, split == "FALSE")
# ----------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_NBT <- FuzzyGeoNaiveBayes(
  train = Train[, -4],
  cl = Train[, 4], cores = 2
)

pred_NBT <- predict(fit_NBT, test)

head(pred_NBT)
head(Test[, 4])

Run the code above in your browser using DataLab