## maximize: 3*x1 + x2 >= z0
## s.t.: 1.875*x1 - 1.5*x2 <= 4 + (1-beta)*5
## 4.75*x1 + 2.125*x2 <= 14.5 + (1-beta)*6
## x1, x2 are non-negative real numbers
obj <- c(3, 1)
A <- matrix(c(1.875, 4.75, -1.5, 2.125), nrow = 2)
dir <- c("<=", "<=")
b <- c(4, 14.5)
t <- c(5, 6)
max <- TRUE
# Problem with solution
FCLP.classicObjective(obj, A, dir, b, t, z0=11, maximum=max, verbose = TRUE)
# This problem has a bound impossible to reach
FCLP.classicObjective(obj, A, dir, b, t, z0=14, maximum=max, verbose = TRUE)
# This problem has a fuzzy bound impossible to reach
FCLP.fuzzyObjective(obj, A, dir, b, t, z0=14, t0=1, maximum=max, verbose = TRUE)
# This problem has a fuzzy bound reachable
FCLP.fuzzyObjective(obj, A, dir, b, t, z0=14, t0=2, maximum=max, verbose = TRUE)
# We want the function estimates a bound and a tolerance
FCLP.fuzzyUndefinedObjective(obj, A, dir, b, t, maximum=max, verbose = TRUE)
# We want the function estimates a bound and a tolerance
FCLP.fuzzyUndefinedNormObjective(obj, A, dir, b, t, maximum=max, verbose = TRUE)
Run the code above in your browser using DataLab