Learn R Programming

FuzzyStatTraEOO (version 1.0)

Simulation: 'Simulation' contains several methods to simulate 'TrapezoidalFuzzyNumberLists'.

Description

Simulation contains 5 different methods that gives the user a 'TrapezoidalFuzzyNumberList'.

Arguments

Author

(s) Andrea Garcia Cernuda <uo270115@uniovi.es>, Asun Lubiano <lubiano@uniovi.es>, Sara de la Rosa de Saa

Methods


Method simulCase1()

This method generates n 'TrapezoidalFuzzyNumbers' contained in a 'TrapezoidalFuzzyNumberList' from a symmetric distribution and with independent components (for a detailed explanation of the simulation see Sinova et al. (2012) [3], namely, the Case 1 for noncontaminated samples).

Usage

Simulation$simulCase1(n = NA)

Arguments

n

positive integer. It is the number of trapezoidal fuzzy numbers to be generated.

Details

See examples.

Returns

a TrapezoidalFuzzyNumberList with n TrapezoidalFuzzyNumbers. Each one is characterized by its four values inf0, inf1, sup1, sup0.

Examples

Simulation$new()$simulCase1(10L)


Method simulCase2()

This method generates n 'TrapezoidalFuzzyNumbers' contained in a 'TrapezoidalFuzzyNumberList' from a symmetric distribution and with dependent components (for a detailed explanation of the simulation see Sinova et al. (2012) [3], namely, the Case 2 for noncontaminated samples).

Usage

Simulation$simulCase2(n = NA)

Arguments

n

positive integer. It is the number of trapezoidal fuzzy numbers to be generated.

Details

See examples.

Returns

a TrapezoidalFuzzyNumberList with n TrapezoidalFuzzyNumbers. Each one is characterized by its four values inf0, inf1, sup1, sup0.

Examples

Simulation$new()$simulCase2(10L)


Method simulCase3()

This method generates n 'TrapezoidalFuzzyNumbers' contained in a 'TrapezoidalFuzzyNumberList' from a asymmetric distribution and with independent components (for a detailed explanation of the simulation see Sinova et al. (2012) [4], namely, the Case 3 for noncontaminated samples).

Usage

Simulation$simulCase3(n = NA)

Arguments

n

positive integer. It is the number of trapezoidal fuzzy numbers to be generated.

Details

See examples.

Returns

a TrapezoidalFuzzyNumberList with n TrapezoidalFuzzyNumbers. Each one is characterized by its four values inf0, inf1, sup1, sup0.

Examples

Simulation$new()$simulCase3(10L)


Method simulCase4()

This method generates n 'TrapezoidalFuzzyNumbers' contained in a 'TrapezoidalFuzzyNumberList' from a asymmetric distribution and with dependent components (for a detailed explanation of the simulation see Sinova et al. (2012) [4], namely, the Case 4 for noncontaminated samples).

Usage

Simulation$simulCase4(n = NA)

Arguments

n

positive integer. It is the number of trapezoidal fuzzy numbers to be generated.

Details

See examples.

Returns

a TrapezoidalFuzzyNumberList with n TrapezoidalFuzzyNumbers. Each one is characterized by its four values inf0, inf1, sup1, sup0.

Examples

Simulation$new()$simulCase4(10L)


Method simulFRSTra()

This method generates n 'TrapezoidalFuzzyNumbers' contained in a 'TrapezoidalFuzzyNumberList' based on the fuzzy rating scale. They are simulated mimicking the human behavior, considering for it a finite mixture of three different procedures (for a detailed explanation of the simulation see De la Rosa de Saa et al. (2012) [1]), and generated in the interval [0,1].

Usage

Simulation$simulFRSTra(n = NA, w1 = NA, w2 = NA, w3 = NA, p = NA, q = NA)

Arguments

n

positive integer. It is the number of trapezoidal fuzzy numbers to be generated.

w1

real number in [0,1]. It should be fulfilled that w1+w2+w3=1.

w2

real number in [0,1]. It should be fulfilled that w1+w2+w3=1.

w3

real number in [0,1]. It should be fulfilled that w1+w2+w3=1.

p

real number > 0. It is the first parameter of the beta distribution.

q

real number > 0. It is the second parameter of the beta distribution.

Details

See examples.

Returns

a TrapezoidalFuzzyNumberList with n TrapezoidalFuzzyNumbers with values in the interval [0,1]. Each trapezoidal fuzzy rating response is characterized by its four values inf0, inf1, sup1, sup0.

Examples

Simulation$new()$simulFRSTra(100L,0.05,0.35,0.6,2,1)


Method clone()

The objects of this class are cloneable with this method.

Usage

Simulation$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

References

[1] De la Rosa de Saa, S.; Gil, M.A.; Gonzalez-Rodriguez, G.; Lopez, M.T.; Lubiano M.A.: Fuzzy rating scale-based questionnaires and their statistical analysis, IEEE Transactions on Fuzzy Systems 23(1), 111-126 (2015)

[2] Lubiano, M.A.; Salas, A.; Carleos, C.; De la Rosa de Sáa, S.; Gil, M.Á.: Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning 88, 128-147 (2017)

[3] Sinova, B.; Gil, M.A.; Colubi, A.; Van Aelst, S.: The median of a random fuzzy number. The 1-norm distance approach, Fuzzy Sets and Systems 200, 99-115 (2012)

[4] Sinova, B.; Gil, M.A.; Van Aelst, S.: M-estimates of location for the robust central tendency of fuzzy data, IEEE Transactions on Fuzzy Systems 24(4), 945-956 (2016)

Examples

Run this code

## ------------------------------------------------
## Method `Simulation$simulCase1`
## ------------------------------------------------

Simulation$new()$simulCase1(10L)

## ------------------------------------------------
## Method `Simulation$simulCase2`
## ------------------------------------------------

Simulation$new()$simulCase2(10L)

## ------------------------------------------------
## Method `Simulation$simulCase3`
## ------------------------------------------------

Simulation$new()$simulCase3(10L)

## ------------------------------------------------
## Method `Simulation$simulCase4`
## ------------------------------------------------

Simulation$new()$simulCase4(10L)

## ------------------------------------------------
## Method `Simulation$simulFRSTra`
## ------------------------------------------------

Simulation$new()$simulFRSTra(100L,0.05,0.35,0.6,2,1)

Run the code above in your browser using DataLab