# NOT RUN {
ratings <- matrix(c( 2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,
4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,
NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)
active_users <- c(1:dim(ratings)[2])
##1
sim.Pearson <- Similarity_Pearson (ratings, active_user=6,
near_user=c(1:dim(ratings)[2]))
##2
Pearson.out <- Pearson (ratings, active_user=6, Threshold_KNN=4)
##3
predict <-Prediction (ratings, active_user=6,
near_user=Pearson.out$near_user_Pearson,
sim_x=Pearson.out$sim_Pearson,
KNN=length(Pearson.out$sim_Pearson))
##4
ItemSelect (ratings, active_user=6, pre_x=predict)
##5
NewKNN.out <- NewKNN (ratings, active_user=6, Threshold_KNN=4,
max_scour=5, min_scour=1)
##6
Genetic.out <- Genetic (ratings, active_user=6,
near_user=NewKNN.out$near_user,
Threshold_KNN=4, max_scour=5, min_scour=1,
PopSize=100, MaxIteration=50, CrossPercent=70,
MutatPercent=20)
##7
Results.out <- Results(ratings, active_users, Threshold_KNN=4, max_scour=5,
min_scour=1, PopSize=100, MaxIteration=50,
CrossPercent=70, MutatPercent=20)
##8
meanR.Results.out <- meanR.Results (obj_Results=Results.out)
##9
plotResults(active_users, Results.out, xlab = "Iteration", ylab = "MAE",
main = "MAE (New KNN+GA) in CF Recommender Systems" )
# }
Run the code above in your browser using DataLab